RAMEY KEMP ASSOCIATES

Moving forward.

T 336 725 5470

621 Jonestown Road, Suite 221 Winston-Salem, NC 27103

August 5, 2020

Mr. Andrew Cibor, PE, PTOE City of Asheville Traffic Engineer P.O. Box 7148 Asheville, North Carolina 28802

Subject: Traffic Impact Assessment for Enclave Asheville

Asheville, North Carolina

Dear Mr. Cibor:

This letter summarizes the findings of the Traffic Impact Assessment (TIA) performed by Ramey Kemp Associates (RKA) for the Enclave Asheville multi-family residential development that is to be constructed on Piney Mountain Drive in Asheville, North Carolina. The purpose of this study is to determine the potential impact created by the additional traffic generated by the multi-family development, which is anticipated to be completed by the end of 2023. In order to accomplish this objective, the study intersections were analyzed under existing (2020), future (2023) 'no-build' and 'build' traffic conditions during the weekday AM, Midday, and PM peak hours. The study area consisted of the following intersections:

- Tunnel Road (US 70/74A) and Chunns Cove Road (SR 2244) Signalized
- Chunns Cove Road and Interstate 240 (I-240) Ramps Unsignalized
- Chunns Cove Road and Piney Mountain Drive Unsignalized

Refer to the attached appendix for the approved NCDOT TIA Scoping Checklist.

Background

The site is currently undeveloped and is located south of The Church at Asheville on Piney Mountain Drive. Access to the site is to be provided via two (2) new full movement connections on Piney Mountain Drive located approximately 1,900 feet and 3,100 feet south of Chunns Cove Road, respectively.

Tunnel Road (US 70/74A) is a five-lane facility that is maintained by the North Carolina Department of Transportation (NCDOT) and has a posted speed limit of 35 miles per hour (mph) in the study area. A center two-way left turn lane is provided on the northbound and southbound approaches at Chunns Cove Road. Tunnel Road carries approximately 12,500 vehicles per day north of Chunns Cove Road and 15,000 vehicles vpd south of Chunns Cove Road according to 2018 NCDOT Annual Average Daily Traffic (AADT) data [which is the most recent available].

Chunns Cove Road (SR 2244) is a two-lane facility that is maintained by the NCDOT and has posted speed limits of 30 mph and 35 mph north and south of Piney Mountain Drive, respectively. An exclusive right

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

ROY COOPER
GOVERNOR

J. ERIC BOYETTE
SECRETARY

September 28, 2020

Chase Smith, P.E. – Ramey Kemp Associates Prepared for: Enclave Asheville Phase 2 McCall Capital 531 S. Main St., Suite 207 Greenville, SC 29601

SUBJECT: **FINAL DECISION** Enclave Asheville Phase 2- Piney Mountain Drive

(City of Asheville street) residential development TIA and Site Plan review

located in Asheville, Buncombe County Division 13.

The District Office has performed a TIA and Site Plan review of the subject residential development located on Piney Mountain Drive (City of Asheville street) off SR-2244 (Chunns Cove Rd) and I-240 in Asheville.

The District Office has determined the following listed improvement(s) (please see attached document) are required to be done in accordance with the <u>Policy on Street and Driveway Access to North Carolina Highways</u>. All improvements and documentation shall be shown on the plans and provided as part of the package submitted to the NCDOT District Office for review and approval of a Driveway Access Permit. Local authority approval sign off shall be obtained prior to submittal (City of Asheville).

All work is to be done in strict compliance with the North Carolina Department of Transportation Standards and Specifications. At your convenience, please submit for a driveway access permit in accordance and provide all necessary documentation. Feel free to give us a call at the District Office (828) 298-2741 if you would like to discuss further.

Sincerely,

Christopher D. Medlin, PE

District Engineer

DocuSigned by:

CDM/nkd Attachments

NC DEPARTMENT OF TRANSPORTATION DIVISION 13 DISTRICT II OFFICE ASHEVILLE, NC 28802 Telephone: (828) 298-2741 Fax: (828) 299-3747 Customer Service: 1-877-368-4968 11 OLD CHARLOTTE HWY. ASHEVILLE, NC 28803

Website: www.ncdot.gov

Enclave Asheville Phase 2 TIA

SC-2020-077 Buncombe County

The North Carolina Department of Transportation (NCDOT) has completed a review of the subject site. The comments and requirements contained in this review are based on data for background conditions presented in the sealed Traffic Impact Analysis (TIA) and are subject to the approval of the local District Engineer's Office and appropriate local authorities (City of Asheville).

Key Dates	
Initially Received by CMS	08/5/2020
Date of Latest Information Received by CMS	09/4/2020
Date of Preliminary Review Accepting TIA for Review	09/8/2020
Sealed TIA Prepared by Ramey Kemp & Associates	09/4/2020
Site Plan Prepared by Civil Design Concepts, PA	07/6/2020

Proposed Development

According to the TIA, the proposed Enclave Asheville Phase 2 development is located on Piney Mountain Dr off SR 2244 (Chunns Cove Rd) and I-240 in Asheville, Buncombe County. The TIA states the development is to be constructed by 2023 and is to consist of the following:

Land Use	Land Use Code	Size
Multifamily Housing (Mid-Rise)	221	360

Trip Generation - Unadjusted Volumes During a Typical Weekday							
Based on appropriate methodology outlined in the ITE Trip Generation Manual, 10 th Ed.							
	IN OUT TOTAL						
AM Peak Hour	31	31 89 120					
PM Peak Hour	92 60 152						
Daily Trips	Daily Trips 1960						

Requested Access Points					
Driveway	Public Roadway	Access Type			
Phase 1 Access	Piney Mountain Dr (city street)	All-Movement			
Phase 2 Access	Piney Mountain Dr (city street)	All-Movement			

TIP Projects in Study Area					
Project	Description	Let Date			
	I-240-mile marker 4 to mile marker 9. Pavement rehabilitation.	01/18/2022			

Study Area

Photo Credit: Google Maps

French Broad River MPO Comprehensive Transportation Plan				
Route	Facility Vision			
I-240	Freeway – Existing			
US 70 (Tunnel Rd)	Other Major Thoroughfare – Existing			
SR 2244 (Chunns Cove Rd)	Minor Thoroughfare – Existing			

TIA Comments

The following items vary from our recommended practices (some comments were satisfied after the initial TIA submittal):

- The PEF used several values for Peak Hour Factor (PHF) in the analyses. Unless sufficient information is given to support another value, 0.90 for signalized intersections should be used.
- For left-turn signal phases, protected/permissive phasing was used in the analysis for one or more intersections without clarification or justification.
- Cycle lengths used for one or more intersections were below the minimums recommended without further clarification or justification. Determination of the number of signal phases should follow NCDOT Signals and Geometrics procedures.
- A SimTraffic Queuing and Blocking Report should be included in the TIA to quantify overall queuing through the network of signals.
- Hand write the date with the signature when signing and sealing the document.
- Internal Protected Stem lengths for each proposed driveway should be provided in the TIA in conformance with requirements in the Driveway Manual
- All link termini should extend a reasonable distance beyond the last node (typically 1000 feet) to ensure adequate queuing can be calculated in SimTraffic.
- Use the "Error Check" tool before running SimTraffic to ensure that there are no anomalies that may alter SimTraffic modeling results.
- Analysis of all lanes with finite storage should include an appropriate default taper of 100 feet or more in the analysis.

General Reference

For reference to various documents applicable to this review please reference the following links: https://connect.ncdot.gov/resources/safety/Pages/Teppl/Pages/Teppl-Topic.aspx?Topic List=C37.

It should be noted that poor LOS and excessive queuing may persist throughout network after recommended developer and outside mitigation.

Analysis of all lanes with finite storage should include an appropriate default taper of 100 feet or more in the analysis. Our storage distances in our reports are minimums that do not include deceleration or taper distances.

Any signing and pavement marking revisions/modifications or improvements necessitated by the development should be the responsibility of the developer unless otherwise noted.

It should be noted that the comments and requirements contained in this review are subject to the approval of the local authorities (City of Asheville).

Please submit for a driveway access permit in Accordance with the Policy on Street and Driveway Access to North Carolina Highways. Local authority's sign off shall be obtained prior to submittal.

Requirements

Legend

• Improvement by Developer. NCDOT concurs with recommendation.

2 Improvement by Developer. Additional or modified requirement.

Piney Mountain Dr – Corridor Analysis

Piney Mountain Dr is a city street under the jurisdiction of the City of Asheville.

Piney Moutian Dr & Proposed Phase 1 Site Access Driveway

Proposed Stop-Controlled Intersection

- WB Proposed Phase 1 Site Access Driveway
 - Two-lane cross-section: one ingress, one egress •
 - Egress: Shared Left/Right-Turn Lane •

Piney Moutian Dr & Proposed Phase 2 Site Access Driveway

Proposed Stop-Controlled Intersection

- WB Proposed Phase 2 Site Access Driveway
 - Two-lane cross-section: one ingress, one egress •
 - Egress: Shared Left/Right-Turn Lane •

Other Intersections

For the following intersections below, no geometric improvements are required for site traffic. •

- SR 2244 (Chunns Cove Rd) & Piney Mountain Dr
- SR 2244 (Chunns Cove Rd) & I-240 Ramps
- US 70 (Tunnel Rd) & Innsbruck Mall Access/SR 2244 (Chunns Cove Rd)

П

RAMEY KEMP ASSOCIATES

Moving forward.

T 336 725 5470

621 Jonestown Road, Suite 221 Winston-Salem, NC 27103

turn lane is provided on the westbound approach at the Tunnel Road intersection, while an exclusive left turn lane is provided on the southbound approach at the I-240 On-Ramp.

Piney Mountain Drive is a two-lane facility with no outlet and a posted speed limit of 35 mph.

Existing lane configurations (number of traffic lanes on the intersection approach), storage capacities, and other intersection and roadway information were collected through field reconnaissance by RKA. Refer to the attached appendix for the site location map, site plan, and an illustration of the existing lane geometrics and traffic control at the study intersections.

Traffic Analysis Procedure

The study intersections were analyzed using the methodology outlined in the Highway Capacity Manual (HCM) published by the Transportation Research Board. The computer software package, Synchro (Version 10.3) was utilized to perform all analyses. Synchro was developed by Trafficware Corporation and allows the user to input data into the Synchro software and calculate the output based on methodologies in the HCM.

The HCM defines capacity as "the maximum hourly rate at which persons or vehicles can reasonably be expected to traverse a point or uniform section of a lane or roadway during a given time period under prevailing roadway, traffic, and control conditions." Level of service (LOS) is a term used to represent different driving conditions and is defined as a "qualitative measure describing operational conditions within a traffic stream, and their perception by motorists and/or passengers." Level of service varies from LOS "A" representing free flow to LOS "F" where greater vehicle delays are evident.

For signalized intersections, Synchro provides LOS calculations for all approaches and an overall resulting LOS. Capacity analysis results for unsignalized intersections do not provide an overall LOS, but rather a LOS for movements and/or approaches that have a conflicting movement. Delay and LOS are the design criteria for this analysis.

Refer to Table 1 for HCM levels of service and related average control delay per vehicle. Control delay as defined by the HCM includes "initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay." As shown in Table 1, an average control delay of 30 seconds at an unsignalized intersection results in level of service D operation at the intersection.

621 Jonestown Road, Suite 221 Winston-Salem, NC 27103

TABLE 1
Highway Capacity Manual Levels of Service and Delay

Signalized	Intersection	Unsignalized Intersection		
Level of Service	Average Control Delay Per Vehicle (Seconds)	Level of Service	Average Control Delay Per Vehicle (Seconds)	
А	0-10	А	0-10	
В	10-20	В	10-15	
С	20-35	С	15-25	
D	35-55	D	25-35	
Е	55-80	Е	35-50	
F	>80	F	>50	

Existing Traffic Conditions

Existing traffic data was collected at the study intersections during the AM (7:00 to 9:00) and PM (4:00 to 6:00) peak periods on a normal weekday in 2017 when school was in session. Please note that the traffic volumes were balanced upwards between the study intersections. In order to estimate existing (2020) traffic volumes, a compounded annual growth rate of 0.5% [per NCDOT and the City] was applied to the balanced 2017 traffic volumes. Refer to the attached appendix for an illustration of the existing (2020) peak hour traffic volumes. Refer to the attached appendix for a copy of the raw traffic count data.

Future 'No-Build' Traffic Conditions

In order to account for the growth of traffic and subsequent traffic conditions at a future year, background traffic projections are needed. Background traffic is the component of traffic due to growth of the community and surrounding area that is anticipated to occur regardless of whether the site is developed. Through coordination with NCDOT and the City, a compounded annual growth rate of 0.5% was applied to the 2020 traffic volumes to project background traffic volumes for the horizon year 2023. Refer to the attached appendix for an illustration of the future (2023) 'no-build' peak hour traffic volumes.

Trip Generation

The average weekday daily as well as the AM and PM peak hour site trips were calculated utilizing the 10th Edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual. Traffic was generated according to the peak hour of adjacent street traffic, utilizing the number of dwelling units as the independent variable for the mid-rise multi-family housing land use (ITE Code 221). ITE equations were used to generate trips for the proposed land. It is estimated that the proposed development could generate 1,960 total trips (entering and exiting) during a typical 24-hour weekday period. Of these daily traffic volumes, it is anticipated that the site could generate 120 trips (31 entering and 89 exiting) during the AM

621 Jonestown Road, Suite 221 Winston-Salem, NC 27103

peak hour and 152 trips (92 entering and 60 exiting) during the PM peak hour. Refer to Table 2 for a breakdown of the site generated traffic volumes

TABLE 2 Site Trip Generation

ITE Land Use (Code)	Independent Variable	Average Daily Traffic (vpd)	Peak	M Hour oh) Enter	Pi Peak (vp Enter	Hour
Mid-Rise Multi-Family Housing (221)	360 dwelling units	1,960	31	89	92	60

Trip Distribution and Assignment

Site trip distribution percentages used for this study were developed based on existing traffic patterns and engineering judgment. The primary site trip distribution is estimated as:

- 40% to/from the north via Tunnel Road
- 20% to/from the south via Tunnel Road
- 35% to/from the south via Interstate 240
- 5% to/from the west via the Innsbruck Mall Access

Refer to the attached appendix for illustrations of the site trip distribution and site trip assignment.

Future 'Build' Traffic Conditions

In order to estimate traffic conditions with the site developed, the site traffic was combined with the future 'no-build peak hour volumes. Refer to the attached appendix for an illustration of the future (2023) 'build' peak hour traffic volumes.

Capacity Analysis

All existing and future traffic conditions were analyzed utilizing existing lane geometrics and traffic control at the study intersections. Per the City of Asheville, the study intersections were analyzed utilizing the peak hour factor (PHF) for each individual approach obtained from the existing traffic counts. In addition, no right turns on red were permitted at the signalized study intersection. Since the signalized intersection is located in a closed loop system, existing signal phasing and timing information was obtained from NCDOT. The existing cycle lengths, phase splits, and offsets obtained from the coordination plans were utilized for all existing and future traffic analysis at this intersection. Based on the timing information provided by NCDOT, the signal operates with a cycle length of 90 seconds during the AM peak period and 110 seconds during the PM peak period. Protected-permissive phasing is provided for the northbound and southbound left turn movements on Tunnel Road, while split-side phasing is provided for the eastbound

621 Jonestown Road, Suite 221 Winston-Salem, NC 27103

and westbound approaches of the Innsbruck Mall Access and Chunns Cove Road. Overlap phasing is provided for the westbound right turn movement on Chunns Cove Road in conjunction with the southbound left turn movement on Tunnel Road. Refer to the attached appendix for a copy of the signal plan and timing data. Please note that for movements in which 'zero' volumes exist, a peak hour volume of 4 vehicles (1 per 15 minute period) was assumed for all analyses.

Refer to Tables 3-7 for summaries of the analysis results for the weekday AM and PM peak hours at each of the study intersections. Refer to the attached appendix for detailed capacity analysis results, as well as an illustration of the 95th percentile queues provided by Synchro under future (2023) 'build' conditions.

Tunnel Road (US 70/74A) and Chunns Cove Road (SR 2244)

Capacity analysis indicates that the signalized intersection is expected to operate at an overall LOS C during the AM and PM peak hours under all existing and future traffic conditions. In addition, all intersection approaches are expected to operate at LOS D or better. Refer to Table 3 for a summary of the capacity analysis results. Detailed Synchro analysis reports can be found in the attached appendix.

TABLE 3
Analysis Results for Tunnel Road and Innsbruck Mall Access/Chunns Cove Road

A P P R O A	Lane Configuration	Existing Traffic Future 'No-Build' Conditions Traffic Conditions				Future Traffic Co	'Build' onditions
C H		Approach	Overall	Approach	Overall	Approach	Overall
		,	AM PEAK H	OUR			
NB SB EB WB	1 LT, 1 TH, 1 TH-RT 1 LT, 1 TH, 1 TH-RT 1 LT, 1 TH-RT 1 LT, 1 TH-RT	B (16.9) B (12.1) D (40.1) D (35.6)	C (22.3)	B (17.1) B (12.2) D (40.1) D (35.5)	C (22.4)	B (18.8) B (13.1) D (40.1) C (34.7)	C (23.5)
			PM PEAK H	OUR			
NB SB EB WB	1 LT, 1 TH, 1 TH-RT 1 LT, 1 TH, 1 TH-RT 1 LT, 1 TH-RT 1 LT, 1 TH-RT	C (27.1) C (20.5) D (52.4) D (42.3)	C (28.8)	C (25.7) C (20.9) D (53.3) D (43.1)	C (28.6)	C (28.0) C (22.1) D (54.2) C (42.8)	C (30.1)

Chunns Cove Road (SR 2244) and Interstate 240 Ramps

Capacity analysis of the unsignalized intersection indicates the that major street southbound left turn movement [on Chunns Cove Road] is expected to experience minor delays [of less than 9.0 seconds per

621 Jonestown Road, Suite 221 Winston-Salem, NC 27103

vehicle] and operate at LOS A during the AM and PM peak hours under all existing and future traffic conditions. The stop-controlled westbound approach [of the I-240 Off-Ramp] is expected to experience moderate overall delays [of less than 29.0 seconds per vehicle] and operate at LOS D or better during the peak hours with the exception of the PM peak hour under future 'build' conditions. Although the delay on the westbound approach of the I-240 Off-Ramp is expected to increase and the level of service is expected to decrease from 'no-build' to 'build' conditions, the stop-controlled approach is expected to operate at a level of operation that is not uncommon at unsignalized intersections, especially during peak times of the day when traffic volumes are the heaviest. Because of this, and the fact that exclusive turn lanes are currently provided on Chunns Cove Road and the ramp, no mitigation is recommended. Refer to Table 4 for a summary of the capacity analysis results. Detailed Synchro analysis reports can be found in the attached appendix.

TABLE 4
Analysis Results for Chunns Cove Road and I-240 Ramps

A P P R O A	Lane Configuration	Existing Cond	j Traffic itions	Future 'N Traffic C	lo-Build' onditions		'Build' onditions
C H		Approach	Overall	Approach	Overall	Approach	Overall
			AM PEAK H	OUR			
NB SB ¹ WB ²	1 TH-RT 1 LT, 1 TH 1 LT, 1 RT	- A (7.8) C (17.3)	-	- A (7.8) C (17.7)	-	- A (8.0) D (28.5)	-
	PM PEAK HOUR						
NB SB ¹ WB ²	1 TH-RT 1 LT, 1 TH 1 LT, 1 RT	- A (8.3) D (25.8)	-	- A (8.4) D (26.9)	-	- A (8.7) E (44.9)	-

- 1. Level of Service for left-turn movement on major approach.
- 2. Level of service for minor-street approach.

Chunns Cove Road (SR 2244) and Piney Mountain Drive

Capacity analysis of the unsignalized intersection indicates that that the major street southbound left turn movement [on Chunns Cove Road] is expected to experience minor delays [of less than 8.0 seconds per vehicle] and operate at LOS A during the AM and PM peak hours under all existing and future traffic conditions. The stop-controlled westbound approach [of Piney Mountain Drive] is expected to experience minor to moderate overall delays [of less than 16.5 seconds per vehicle] and operate at LOS C or better

621 Jonestown Road, Suite 221 Winston-Salem, NC 27103

during the peak hours. Refer to Table 5 for a summary of the capacity analysis results. Detailed Synchro analysis reports can be found in the attached appendix.

TABLE 5
Analysis Results for Chunns Cove Road and Piney Mountain Drive

A P P R O A	Lane Configuration	_	j Traffic itions	Future 'N Traffic Co	No-Build' onditions		'Build' onditions
C H		Approach	Overall	Approach	Overall	Approach	Overall
		,	AM PEAK H	OUR			
NB SB ¹ WB ²	1 TH-RT 1 LT, 1 TH 1 LT, 1 RT	- A (7.7) B (10.8)	-	- A (7.7) B (10.8)	-	- A (7.8) B (12.9)	-
	PM PEAK HOUR						
NB SB ¹ WB ²	1 TH-RT 1 LT, 1 TH 1 LT, 1 RT	- A (7.7) B (13.1)	-	- A (7.7) B (13.3)	-	- A (7.9) C (16.3)	-

- 1. Level of Service for left-turn movement on major approach.
- 2. Level of service for minor-street approach.

Piney Mountain Drive and Site Drive 1

Capacity analysis of the unsignalized intersection indicates that that the major street southbound left turn movement [on Piney Mountain Drive] is expected to experience minor delays [of less than 8.0 seconds per vehicle] and operate at LOS A during the AM and PM peak hours under all existing and future traffic conditions. The stop-controlled westbound approach [of Site Drive 1] is expected to experience minor overall delays [of less than 10.0 seconds per vehicle] and operate at LOS A during the peak hours. Refer to Table 6 for a summary of the capacity analysis results. Detailed Synchro analysis reports can be found in the attached appendix.

621 Jonestown Road, Suite 221 Winston-Salem, NC 27103

TABLE 6
Analysis Results for Piney Mountain Drive and Site Drive 1

A P P R O A	Lane Configuration	Future Traffic C				
C H		Approach	Overall			
AM PEAK HOUR						
NB SB ¹ WB ²	1 TH-RT 1 LT-TH 1 LT-RT	- A (7.4) A (9.0)	-			
	PM PEAK HOUR					
NB SB ¹ WB ²	1 TH-RT 1 LT-TH 1 LT-1 RT	- A (7.8) A (9.9)	-			

- 1. Level of Service for left-turn movement on major approach.
- 2. Level of service for minor-street approach.

Piney Mountain Drive and Site Drive 2

Capacity analysis of the unsignalized intersection indicates that that the major street southbound left turn movement [on Piney Mountain Drive] is expected to experience minor delays [of less than 8.0 seconds per vehicle] and operate at LOS A during the AM and PM peak hours under all existing and future traffic conditions. The stop-controlled westbound approach [of Site Drive 2] is expected to experience minor overall delays [of less than 10.0 seconds per vehicle] and operate at LOS A during the peak hours. Refer to Table 7 for a summary of the capacity analysis results. Detailed Synchro analysis reports can be found in the attached appendix.

621 Jonestown Road, Suite 221 Winston-Salem, NC 27103

TABLE 7
Analysis Results for Piney Mountain Drive and Phase 2 Access

A P P R O A	Lane Configuration	Future 'Build' Traffic Conditions				
C H		Approach	Overall			
AM PEAK HOUR						
NB SB ¹ WB ²	1 TH-RT 1 LT-TH 1 LT-RT	- A (7.3) A (8.8)	-			
	PM PEAK H	OUR				
NB SB ¹ WB ²	1 TH-RT 1 LT-TH 1 LT-1 RT	- A (7.7) A (9.6)	-			

- 1. Level of Service for left-turn movement on major approach.
- 2. Level of service for minor-street approach.

Queuing Analysis

Based on the 95th percentile queues [calculated by Synchro], it appears that the existing turn lane storages provided on Tunnel Road and Chunns Cove Road are adequate. Queues on Tunnel Road and Chunns Cove Road under 'build' conditions are not expected to increase by more than 40 feet when compared to the 'nobuild' conditions. Additionally, queues on the westbound stop-controlled approaches of the I-240 Off-Ramp and Piney Mountain Drive at Chunns Cove Road under 'build' conditions are not expected to increase by more than 65 feet when compared to the 'no-build' conditions. Refer to Figure 9 for an illustration of the proposed lane configurations with the 95th percentile queues expected for each lane.

Conclusions

In conclusion, the multi-family residential development is not expected to have a significant impact on the operation of the adjacent transportation network. Based on the findings of this traffic impact assessment, the signalized intersection of Tunnel Road and Chunns Cove Road is expected to operate at an overall LOS C or better during the weekday AM and PM peak hours under all existing and future traffic ocnditions. In addition, all intersection approaches are expected to operate at LOS D or better. As for the unsignalized intersections, all main street left turn movements are expected to operate at LOS A during the peak hours under existing and all future traffic conditions. Furthermore, each of the stop-controlled approaches are

RAMEY KEMP ASSOCIATES

Moving forward.

T 336 725 5470

621 Jonestown Road, Suite 221 Winston-Salem, NC 27103

expected to operate at LOS D or better, with the exception of the westbound approach of the I-240 Off-Ramp during the PM peak hour under 'build' conditions. As stated previously, the greater delays and poorer levels of operation are not uncommon for stop-controlled approaches during peak times when traffic volumes are the heaviest. Finally, there does not appear to be any queuing problems associated with the addition of the development traffic.

Sincerely,

Ramey Kemp and Associates, Inc.

(License# C-0910)

Chase Smith, PE

APPENDIX

APPROVED NCDOT SCOPING CHECKLIST

NCDOT Traffic Impact Analysis Need Screening / Scoping Request

A Traffic Impact Analysis (TIA) may be required for developments based on the site trip generation estimates, site context, or at the discretion of the NCDOT District Engineer. The Applicant or the TIA Consultant shall submit this form along with the site plan to the District Engineer to determine the TIA need and, if a TIA is required, initiate the TIA scoping process. Without an approved scope, the TIA is incomplete and will be rejected until the study is revised to conform to NCDOT's TIA requirements.

Project Name: Encl	ave Asheville	Phase 2		_ Previous	Name: If Applicable						
Location: Piney Mo	untain Drive			_ County:	Bunco	mbe	M	lunicipa	ality: <u>As</u>	sheville	
Project Description:	Phase 2 of	Enclave A	Asheville Mu	lti-family De	velopm	ent loca	ated on	Piney N	/Iountai	n Drive	•
Client is approved 22	0 units under l	Phase 1 an	d is proposin	g a total of 3	60 units	s [140 u	ınits in	Phase 2]		
Project Contact:		Applica	nt								
Company Name	McCall Capital					Ra	mey Ke	mp Ass	ociates		
Contact Person	M	arcus S. M	IcCall				Cha	se Smit	h		
Phone Number		864-370-0	037				336-	725-547	70		
Email	mm	@mccallc	ap.com			csn	nith@ra	meyker	np.com	l	
Mailing Address	531 S. Main St., Suite 207					621 Jc	nestow	n Road	Suite 2	221	
_	Gre	enville, SC	C 29601			Wir	iston Sa	ılem, N	C 27103	3	
Site Plan Prepared E See site plan/vicinity ma Parcel Size: Weekday Site Trip Ge	p requirements Acre(s)	on page 2.		split, pass-by	Anti	icipate	d Build	uly 6, 2 -Out Ye	ear: <u>20</u>	23	
ITE Branged Land II	C:	Limit	Daily Tring	Peak Hour	AM Pe	eak Hou	r Trips	Trips PM Peak Hour Trips			Data
LUC Proposed Land U	se Size	Unit	Daily Trips	Туре	Enter	Exit	Total	Enter	Exit	Total	Source
221 Midrise Multifar	n 360	DU	1960	Adj. Street	31	89	120	92	60	152	Other Data**
							ļ				
Total			1960		31	89	120	92	60	152	
Refer to the current NCL			ent Capacity A	<u> Analysis Guide</u>	<u>elines</u> for	accepta	able trip	calculation	on metho	ods and	data sources.
**Explain local or other d	ata sources, if u	ısed:									
☐ The estimated s	ite trips mee	t NCDOT	s's TIA trip	threshold o	f 3,000	daily	trips.				
☐ The estimated s	ite trips mee	t the mun	icipal TIA t	rip thresho	ld of						
☐ This project is I	-		_	_							
☐ This project is i				ocai Cir pi	ojeci #						

Effective Date: 10/01/2017 (Version 17-721) Page 1 of 2

NCDOT Traffic Impact Analysis Need Screening / Scoping Request

TIA Scoping

☐ The proposed site access is located ☐ The Applicant requests for a new or ☐ The Applicant requests for a new or	r modified control-of-access break.	11 7/17/2020
Applicant's Signature	Print Name	Date
Site Plan/Vicinity Map Requirement during the TIA scoping stage, the gradequate details on the development so show the location and type of each intersections, internal street network, pr build-out and, if applicable, any nearby	raphic representation of the proposed cope and context. More specifically, the access point, spacing to adjacent as coposed buildings/parcels with their anti-	development shall provide e site plan/map shall clearly nd opposing driveways or cipated uses and sizes at full
Project Name:	Project Reference N	Number:
NCDOT maintained transportation	Government. In addition, the study area facilities. er the <i>Policy on Street and Driveway Access to N</i>	-
	are checked, the Applicant/TIA Consultations of the Scoping Checklist, and return to the scoping meeting.	
•	ision is based on the development infor ill require re-evaluation of the TIA need	-

The Applicant should inform the District Engineer of any significant changes in a timely fashion to avoid

delays or rejections of the driveway permit / encroachment agreement applications.

Effective Date: 10/01/2017 (Version 17-721)

NCDOT Traffic Impact Analysis Need Screening / Scoping Request

Additional Comments:

The TIA need decision is made by the NCDOT Division	District on
NGDOTD: (' A D	D. A.
NCDOT District Representative's Signature	Print Name
Email concurrence may be used in lieu of the signature.	

Effective Date: 10/01/2017 (Version 17-721) Page 3 of 2

Project Name	e: Enclave Ashev	ville Phase 2			TIA Scoping Date: 7-6-2020					
☐ TIA Need	l Screening For	ms are Attached. Pro	ject Reference	ce #:	Decisio	on Date:				
🛛 Site Plan a	_		•							
	-	rating site access, inte		-	_					
		eet and Driveway Access to N	orin Carolina Hi	<u>gnways</u> pages 14 a	and 15 for site plan requi	rements.				
□ Identify	y site access.			T						
New	On Road	Access Ty		(6)	Driveway Spa					
Access	Road Name	Permitted Movements	Traffic Control	Distance (ft)	Direction	Nearest Intersection / Access				
Access A	Piney Mtn	Conventional Full-Mymt	Uncontrolled	3100	East	Chunns Cove				
Access B	Piney Mtn	Conventional Full-Mvmt	Uncontrolled	1900	East	Chunns Cove				
Access C										
Access D										
Access E				 						
Access F										
Access G										
Access H		<u> </u>		<u> </u>						
Existing _	Existing I	ntersection of	Access	Prop	osed Interconnectiv	ity (If Applicable)				
Access	Road A	Road B	Modification	Connector#	Road Connected	Adjacent Development				
Access 1			Please Select	Connector 1						
Access 2				Connector 2						
Access 3				Connector 3						
Access 4	<u> </u>			Connector 4						
		ications and provision ag access, loading/unle								
☐ Peak H☐ Interna with th☐ Clarify	OT MSTA School our Factors (PH) I school circulating TIA submittal.	ol Traffic Calculator for some shall be adjusted/von analysis is required plans (e.g. traffic circularation, queue storage	veighted for i	new school tr be submitted rn, pedestrian	rips (0.5 PHF by d d in advance or co n access, drop-off	ncurrent /pick-up				

Effective Date: 10/01/2017 (Version 17-721)

▼ Trip Generation

The TIA Consultant shall prepare trip generation estimates following the current <u>NCDOT Congestion</u> <u>Management Capacity Analysis Guidelines</u>, and submit the calculation sheets and supporting information to the District Engineer for approval prior to capacity analysis.

ITE		<u> </u>		I	Peak Hour	AM Pe	eak Hou	Trips	PM Pe	eak Hou	r Trips	
LUC	Proposed Land Use	Size	Unit	Daily Trips	Туре	Enter	Exit	Total	Enter	Exit	Total	Data Source
221	MidRise Multifam	360	DU	1960	Adj. Street	31	89	120	92	60	152	ITE Equation
Ш												
\perp								_				
\vdash												
\vdash												
											<u> </u>	
-		<u> </u>		4050	<u> </u>	24		400			450	
Elizabeth de	Unadjusted Sit	e irips		1960		31	89	120	92	60	152	
lr	nternal Capture Trips (Atta	ch Calculation	n Sheets)									Please Select
	nternal Capture % of Una	djusted Sit	e Trips	<u> </u>	%		%		%			
LUC	Proposed Land Use	Any Inte	rnal Trips?	ļ	Pa	ass-By % of External Trip			-X			$\geq \leq$
		Not A	oplicable		%		%			%		ITE Rate
					%		%			%		
				ļ	%	<u> </u>	<u>%</u>			%		
<u> </u>					%	ļ	%			%		<u> </u>
<u> </u>					%		<u>%</u>			<u>%</u>	1	
<u> </u>	Pass-By Trips (Attach C		eets)								<u> </u>	
	Adjacent Street							1				Please Select
	Non-Pass-By Prir		ec. II.									
	Diverted Trips, if Applical	ole and Jus	titiable								<u> </u>	Please Select

^{**}Explain local or other data sources, if used:

NOTE: Ultimate build out [Phase 1 + Phase 2] is expected to be up to 360 units. The client is currently approved for 220 units under Phase 1.

☐ Existing Site Trip Information for Redevelo	pment Projects (Attach separate sheets as needed)
---	---

ITE	Eviating Land Llas	Size Unit Daily Trips Peak Hour AM Pea	1 Peak Hour Trips		PM Pe	eak Hou	Data Source									
LUC	Existing Land Use		Size Unit	Offic Daily Inp	OINL D	Unit Daily Imps	Onit Daily Inps	Daily Imps	mit Daily Imps	Туре	Enter	Exit	Total	Enter	Exit	Total
					Please Select							Please Select				
	Total Existing S	ite Trips										><				

Effective Date: 10/01/2017 (Version 17-721) Page 2 of 7

☒ Trip Distribution

☐ Trip distribution diagrams a ☐ Trip distribution diagrams w ☐ District Engineer for review based on the current and ar	will be submitted separately wand approval prior to cap	y, along with suppo pacity analysis. The	rting info	ormation	, to the
If required by the District Engi Mixed-Use Developments Inter-Development Trips (i Pass-By Trips Diverted Trips Each Analysis Period	(separate diagrams for resi	dential, commercial			
☐ Mode Split					
☐ Provide Data Source and Ju		Mode Period AM Peak PM Peak Daily other modes of trave	Auto	% % % %	% % % %
➤ Analysis Peak Periods: ➤ Weekday AM Peak ➤ Weekday PM Peak □ Weekday Midday Peak □ Weekday PM School Pea	7-9 AM 4-6 PM				
☐ WeekendPeak ☐ Other					

Effective Date: 10/01/2017 (Version 17-721)

☒ Study Area Intersections and Data Collection

The study area shall include the site access intersections (both new and existing) identified under "Site Plan and Access" on page 1, as well as the following external and, if applicable, internal intersections.

External	Interse	Intersection of Traffic Intersection Turning Movement Counts				ent Counts	Notos		
Intersection	Road A	Road B	Control	New / Existing	Date of Counts	Growth Adjustment	Notes		
#1	Tunnel	Chunns Cove	Signal	Use Existing Counts	3/23/17	0.5%			
#2	Chunns Cove	I-240	2-Way Stop	Use Existing Counts	3/23/17	0.5%			
#3	Chunns Cove	Piney Mountain	2-Way Stop	Use Existing Counts	3/23/17	3/23/17 0.5%			
#4									
#5									
#6									
#7									
#8									
#9									
#10									
#11 #12				-					
#12					<u> </u>				
Internal	Interse	Intersection of		Access Type		Intersection Spacing			
Intersection	Road A	Road B	Traffic Control	Permitted Movements	Distance (ft)	Direction	Nearest Intersec		
#101			Please Select	Please Select		Please Select			
#102									
#103									
#104									
#105									
☐ Nev Unle perio	ess otherwise noted a ods. Weekday counts	e collected: covement counts in bove, new traffic count shall avoid Mondays, f mpact of existing a	ts shall be col Fridays, holida	lected at the existing ys, school breaks, roa	study intersed ad closures, ar	tions during the nd major weather	analysis events.		
	intersections n	umbered:							
aı	nd access points n	umbered:							
☐ Tr	affic Forecast Dat	a for TIP:							
\boxtimes Ro	oadway/Intersection	on Configuration &	Traffic Co	ntrol					
⊠ Tr	affic Signal Phasir	ng & Timing Data							
☐ Cr	ash Data:				Period:				

Effective Date: 10/01/2017 (Version 17-721)

Other:

▼ Future Year Conditions

NCDOT TIA Scoping Checklist

☐ Identif		led/comr	mitted future transpear the site.			ıts, as w	ell as any approv	ed
I	STIP / Local CIP Project		Year Comple	ete				
Near De	by Approved velopment		Location	Future (exclude any c	Land Use ompleted		Committed Improv	rements
Justific Local Co	omprehensive Tr	e: per Co	% Ingestion Manageme Interpretation Plan Complication Plan Planning	ance	; negligib	ole grow	th on Tunnel Road	
☐ Identi	fy Applicable Ro	adways i	nside the Study Ar		pposed			Affect Study
Road Name	Classification	Limit	Proposed Cross-Se	ection Righ	t-of-Way	Compl	iance Requirements	Intersection #

⊠ Study Method

The traffic analysis shall follow the current <u>NCDOT Congestion Management Capacity Analysis Guidelines</u>, <u>Policy on Street and Driveway Access to North Carolina Highways</u>, and use the current approved version of analysis software (e.g. Synchro/SimTraffic, HCS, Sidra Intersection, TransModeler).

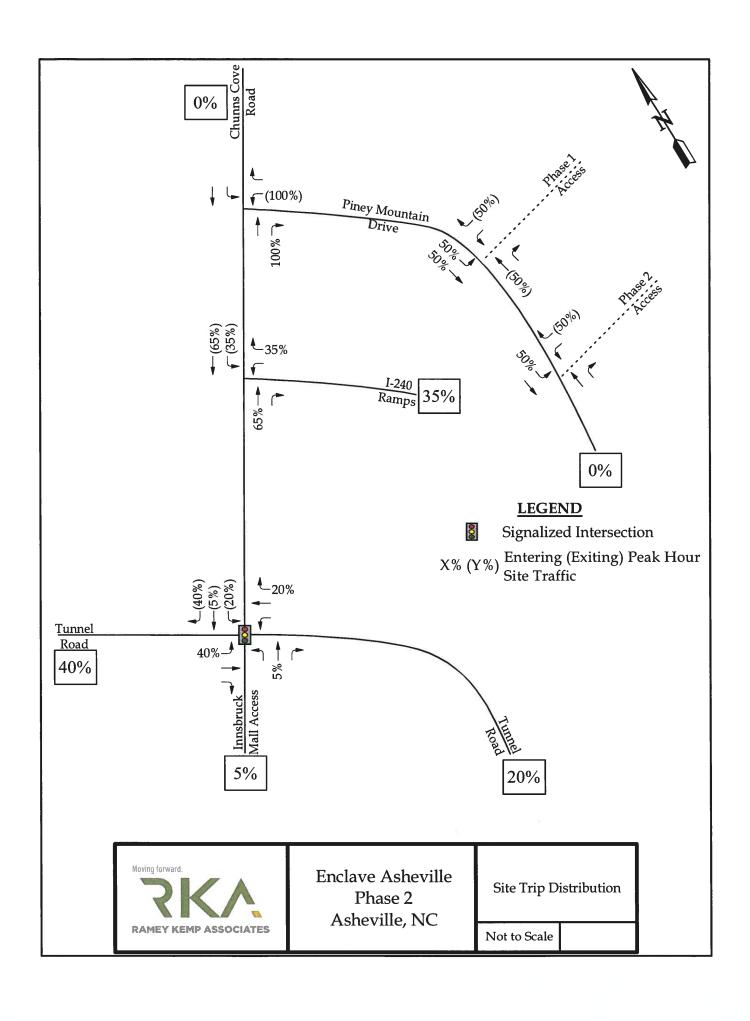
The study shall include the following analysis scenarios for each analysis period.

,
1. Existing Conditions
2. Future No-Build Conditions (existing + background growth + approved developments + committed or funded improvements)
3. Future Build Conditions (future no-build + site trips)
4. Future Build with Improvements Conditions (future build traffic with improvements to mitigate the proposed development's impacts) and, if applicable:
☐ 5. TIP Design Year Analysis
☐ 6. Alternative Access Scenario (without proposed control-of-access or median break / modification)
The following additional analysis/outputs should be provided as warranted:
☐ Signal Warrant Analysis for accesses/intersections
☐ Multi-Modal Level of Service Analysis
☐ School Loading Zone Traffic Simulation
☐ Phasing Analysis (scope separately as needed)
☐ Safety/Crash Analysis
☐ Control-of-Access Modification Justification
☐ Median Break / Modification Justification
☐ Other
⊠ Submittals
In addition to the hardcopies required below, the TIA Consultant shall provide the District Engineer and, it
required, the local government an electronic copy of the study documents, including the latest site plan
figures and appendices, in searchable PDF files and the original traffic analysis files (e.g., Synchro, HCS)
To expedite review, the NCDOT electronic submittals shall also be delivered concurrently to:
To expedite feview, the free of electronic submittals shall also be delivered concurrently to.
☐ Div. Traffic Engr ☐ Regional Traffic Engr ☐ Congestion Management ☐ Other

Submittals	NCDOT		Local Government	
Submittals	Electronic Har	Hardcopy	Electronic	Hardcopy
Trip Generation & Distribution	Required		Please Select	
Draft TIA Report	Required			
Final Sealed TIA Report	Required			

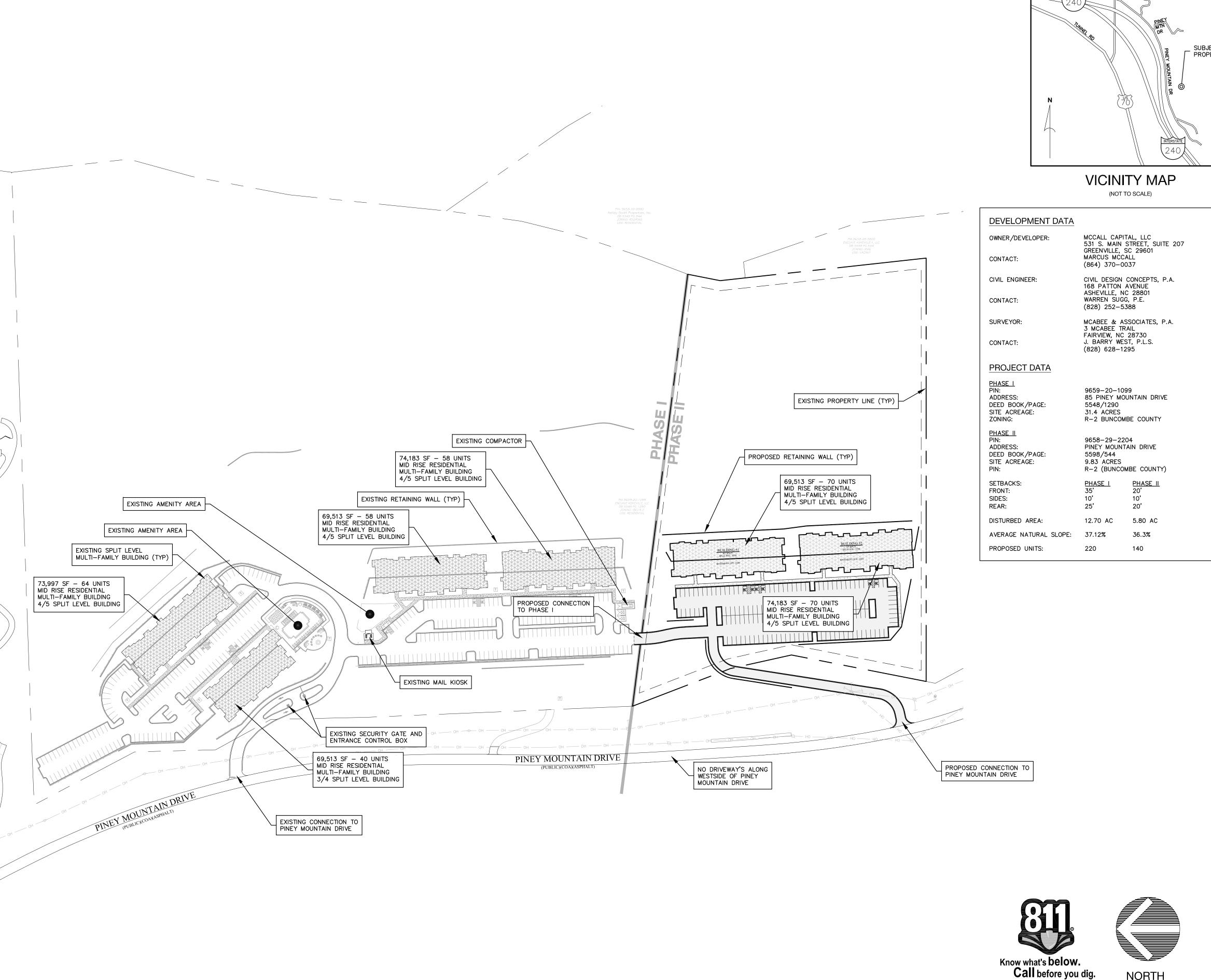
Additional Comments (municipal TIA requirements, approved variations from NCDOT guidelines)

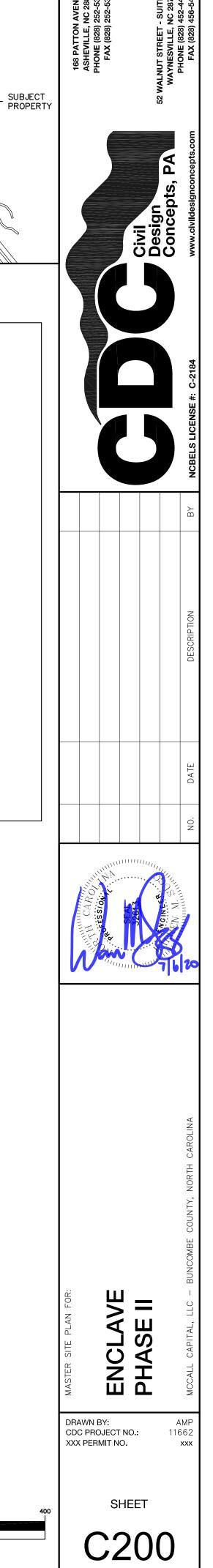
Effective Date: 10/01/2017 (Version 17-721)



Agreement by All Parties

The undersigned agree to the contents and methodology described above for completing the required traffic impact analysis for the proposed development identified herein. Any changes to the above methodology contemplated by the Applicant or the TIA Consultant must be submitted to the District Engineer in writing. If approved by NCDOT, then such changes may be accepted for the TIA report. Subsequent revisions to the development plan (e.g. land use, density, site access, or schedule) may require additional scoping and analysis, and may modify the TIA requirements.


This agreement shall become effective on the date approved by NCDOT, and shall expire 12 months after the effective date or upon significant changes to the roadway network and/or development assumptions, whichever occurs first. Once expired, renewal or re-scoping will be required for subsequent TIA submittals.


APPLICANT METALL	Marcus McCall	7/17/2020
Signature	Print Name	• Date
TIA CONSULTANT	Chase Smith	7-6-2020
Signature	Print Name	
LOCAL GOVERNMENT REPRESENTATIVE		- Du
Signature Email concurrence may be used in lieu of the signature.	Print Name	Date
NCDOT DISTRICT REPRESENTATIVE		
Reviewed and approved by the NCDOT Division	Districton	<u> </u>
		D.: NT
Signature Email concurrence may be used in lieu of the signature.		Print Name
Eman concurrence may be used in new or the signature.		

NOTES ALL SITEWORK SHALL BE IN ACCORDANCE WITH ALL LOCAL, STATE, AND NATIONAL REGULATORY STANDARDS AND ALL REQUIREMENTS IN THE PROJECT TECHNICAL SPECIFICATIONS. 2. **SINLGE**-PHASE CONSTRUCTION. 3. ALL WORK MUST BE PERFORMED BY A NORTH CAROLINA LICENSED CONTRACTOR. PROPOSED DEVELOPMENT WILL BE PROVIDED WITH UTILITIES VIA EXISTING RIGHT-OF-WAYS AND PROPOSED UTILITY EASEMENTS. CONTRACTOR IS RESPONSIBLE FOR LOCATING AND VERIFYING THE EXACT LOCATION AND ELEVATION FOR ALL UTILITIES PRIOR TO CONSTRUCTION; AND TO NOTIFY ENGINEER OF ANY CONFLICTS OR DISCREPANCIES. THE LOCATION OF SOME UTILITIES SHOWN ON THE PLANS HAVE BEEN APPROXIMATED. ALL BURIED UTILITIES HAVE NOT BEEN SHOWN ON THE PLANS AND IT IS THE CONTRACTOR'S RESPONSIBILITY TO DETERMINE THEIR LOCATION PRIOR TO CONSTRUCTION. CONTRACTOR SHALL PROTECT EXISTING SITE FEATURES AND NEWLY COMPLETED WORK DURING CONSTRUCTION. ANY DAMAGE INCURRED DURING OR RESULTING FROM CONSTRUCTION ACTIVITY IS THE RESPONSIBILITY OF THE CONTRACTOR AND IS TO BE REPAIRED IN ACCORDANCE WITH APPLICABLE STANDARDS OF APPROPRIATE AGENCIES AT THE CONTRACTOR'S EXPENSE. PROPOSED DRIVES WITHIN THE DEVELOPMENT TO BE PRIVATE INTERNAL DRIVES. ALL STRIPING AND SIGNAGE SHALL BE IN ACCORDANCE WITH THE LATEST MANUAL ON UNIFORM TRAFFIC CONTROL DEVICE (MUTCD). DRIVEWAY MAINTENANCE IS THE FINANCIAL RESPONSIBILITY OF THE TOPOGRAPHICAL INFORMATION SHOWN PROPOSED FROM PHOTOGRAMMETRIC METHODS. THE DEVELOPMENT SHOWN ON THIS PLAN WILL BE SERVED BY MSD SEWER AND CITY OF ASHEVILLE WATER (SEE UTILITY PLAN FOR PRELIMINARY WATER AND SEWER LAYOUTS). PROVISIONS WILL BE MADE BY THE DEVELOPER FOR ELECTRICAL, TELEPHONE, CABLE, AND/OR APPROVED EROSION CONTROL AND STORMWATER MANAGEMENT PLAN TO BE OBTAINED PRIOR TO BEGINNING ANY PHASE OF CONSTRUCTION. EROSION CONTROL DEVICES WILL BE MAINTAINED FOR THE DEVELOPMENT OF THE DEVELOPMENT PERIOD BY THE RESPONSIBLE PARTY. 10. NO PORTION OF THE SITE LIES WITHIN THE 100-YR FEMA FLOODPLAIN. 11. CONSTRUCTION LIKELY TO BEGIN IN THE SUMMER OF 2020; AND BE COMPLETED IN

APPROXIMATELY 12 MONTHS.

NORTH

MASTER SITE PLAN

GRAPHIC SCALE

(IN FEET) 1 inch = 100 ft.

Chase Smith

From: Dorato, Nicholas K < nkdorato@ncdot.gov>

Sent: Thursday, July 23, 2020 11:55 AM

To: Chase Smith

Cc: Jay Clapp; Andrew Cibor; Reese, Michael P; Olson, David W; Sanderson, Angela; Ken

Putnam; Roberts, James P; Benton, Gregory E; Medlin, Christopher D; Henderson,

Anna G: Gallo, Robert S

Subject: RE: [External] RE: Enclave Asheville Phase II (SC-2020-077)

Attachments: Scoping Review SC-2020-077 Enclave Asheville Phase II.pdf; NCDOT Traffic Impact

Analysis w.signature 07.17.2020.pdf

Importance: High

Chase,

NCDOT has reviewed the scoping checklist for the proposed Enclave Asheville Phase II Development. We find the provided information reasonable. The District office concurs with the scoping checklist for the proposed Development. This email concurrence may be used in lieu of the approval signature. Please submit TIA in accordance to NCDOT policies and procedures and provide all applicable information. Thanks in advance.

Thanks,

Nick Dorato

Engineering Technician III
North Carolina Department of Transportation
Division 13 District 2

8282982741 office nkdorato@ncdot.gov

11 Old Charlotte Hwy Asheville, NC 28803

Email correspondence to and from this address is subject to the North Carolina Public Records Law and may be disclosed to third parties.

From: Chase Smith <csmith@rameykemp.com>

Sent: Friday, July 17, 2020 2:50 PM

To: Dorato, Nicholas K < nkdorato@ncdot.gov>

Cc: Jay Clapp < jclapp@rameykemp.com>; Andrew Cibor <acibor@ashevillenc.gov>; Reese, Michael P

<mikereese@ncdot.gov>; Olson, David W <dwolson@ncdot.gov>; Sanderson, Angela <amsanderson@ncdot.gov>; Ken

Putnam < kputnam@ashevillenc.gov>; Roberts, James P < paulroberts@ncdot.gov>; Benton, Gregory E

Chase Smith

From: Andrew Cibor <acibor@ashevillenc.gov>

Sent: Friday, May 22, 2020 8:41 AM

To: Chase Smith

Cc: Reese, Michael P; Dorato, Nicholas K; Ken Putnam; Medlin, Christopher D; Roberts,

James P; Olson, David W; Jay Clapp

Subject: Re: [External] RE: Enclave Asheville Phase II (SC-2020-077)

Yes - with the clarifications/direction provided in this email exchange. Thank you

Andrew Cibor, PE, PTOE

City of Asheville | Transportation Department (828) 259-5943 | <u>acibor@ashevillenc.gov</u>

On Thu, May 21, 2020 at 7:12 PM Chase Smith <csmith@rameykemp.com> wrote:

Awesome. Shall we consider this to be the City's concurrence with the provided checklist?

Chase Smith, PE

Traffic Engineering Project Manager

D 336 714 0112 | T 336 725 5470

rameykemp.com

From: Andrew Cibor <acibor@ashevillenc.gov>

Sent: Thursday, May 21, 2020 5:43 PM To: Chase Smith <csmith@rameykemp.com>

Cc: Reese, Michael P < mikereese@ncdot.gov >; Dorato, Nicholas K < nkdorato@ncdot.gov >; Ken Putnam

<kputnam@ashevillenc.gov>; Medlin, Christopher D <cdmedlin@ncdot.gov>; Roberts, James P

<paulroberts@ncdot.gov>; Olson, David W <dwolson@ncdot.gov>; Jay Clapp <jclapp@rameykemp.com>

Subject: Re: [External] RE: Enclave Asheville Phase II (SC-2020-077)

Thank you Chase. That sounds good to me.

Andrew Cibor, PE, PTOE

City of Asheville | Transportation Department

(828) 259-5943 | acibor@ashevillenc.gov

On Thu, May 21, 2020 at 5:36 PM Chase Smith < csmith@rameykemp.com > wrote:

Good Afternoon Andrew,

Thanks for your comments!

We can use 0.5% if everyone is one board with that. In terms of how we will distribute Phase 1 trips and Phase 2 trips, we will utilize the trip distribution from the previously approved study. Then at the site driveways, it is likely that all of Phase 1 traffic will use the first driveway on Piney Mountain [I agree with you that the only folks utilizing the Phase 2 access will be Phase 2 residents]. We assumed a 50/50 split for Phase 2 at the driveways due to the location of the existing mail kiosk and other amenities that are located in the Phase 1 portion of the development, which is more accessible via the access first access.

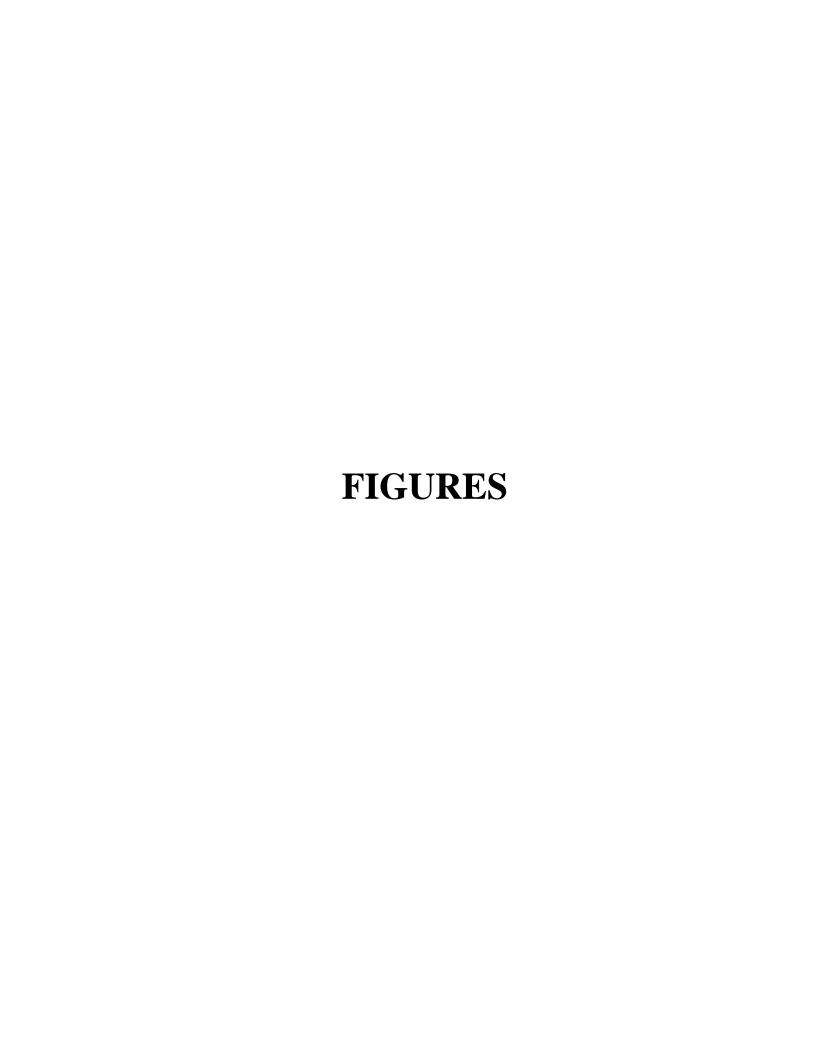
Chase Smith, PE

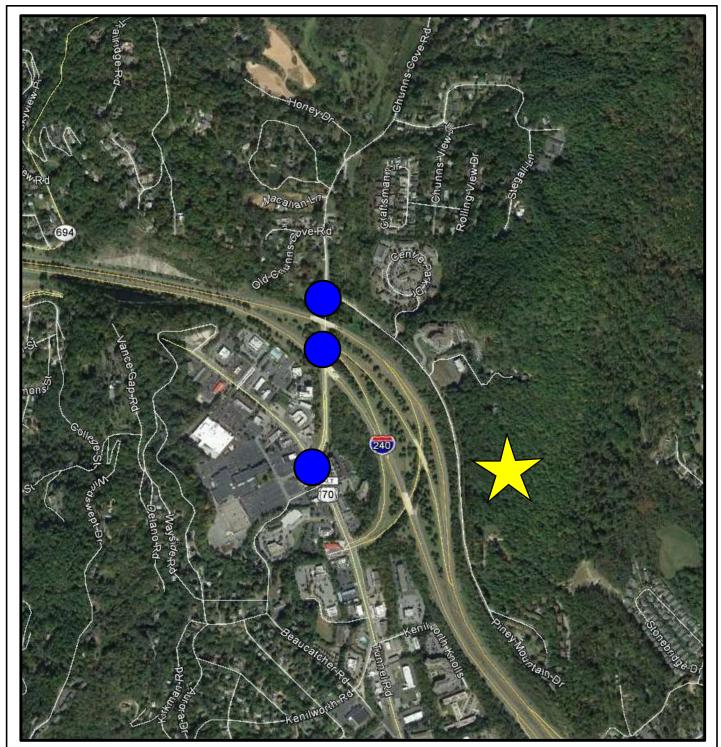
Traffic Engineering Project Manager

D 336 714 0112 | T 336 725 5470

rameykemp.com

From: Andrew Cibor <acibor@ashevillenc.gov>


Sent: Thursday, May 21, 2020 4:52 PM To: Chase Smith <csmith@rameykemp.com>


Cc: Reese, Michael P <mikereese@ncdot.gov>; Dorato, Nicholas K <nkdorato@ncdot.gov>; Ken Putnam

<kputnam@ashevillenc.gov>; Medlin, Christopher D <cdmedlin@ncdot.gov>; Roberts, James P

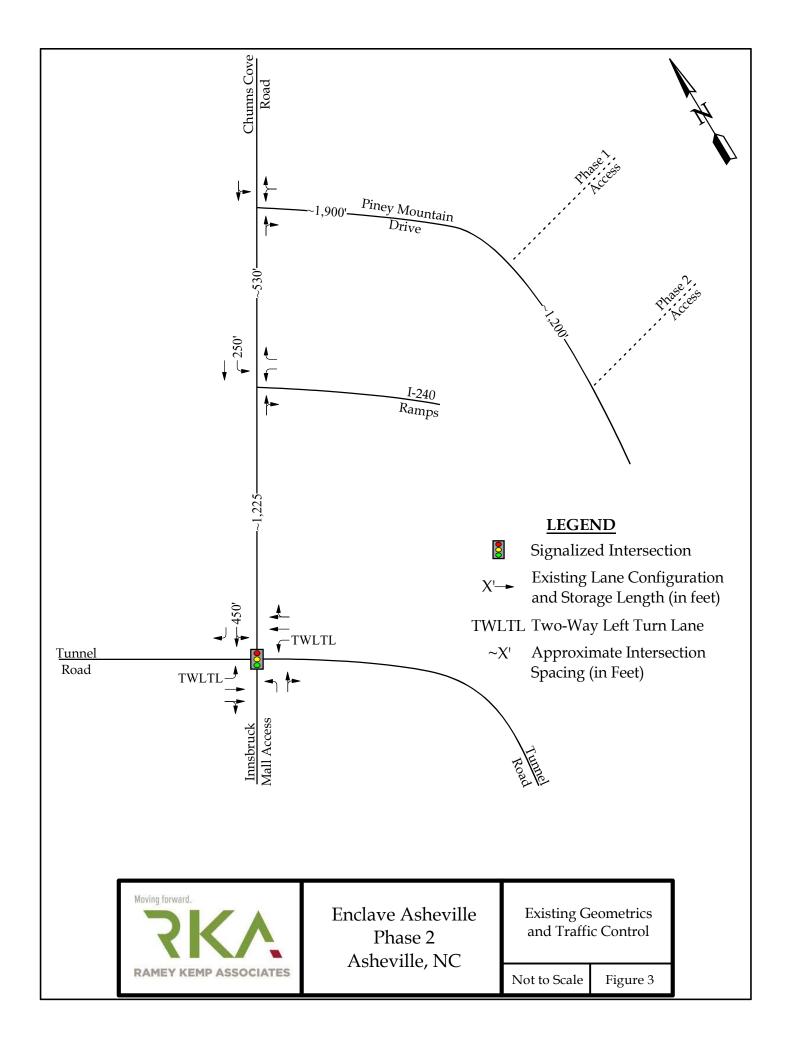
<paulroberts@ncdot.gov>; Olson, David W <dwolson@ncdot.gov>; Jay Clapp <jclapp@rameykemp.com>

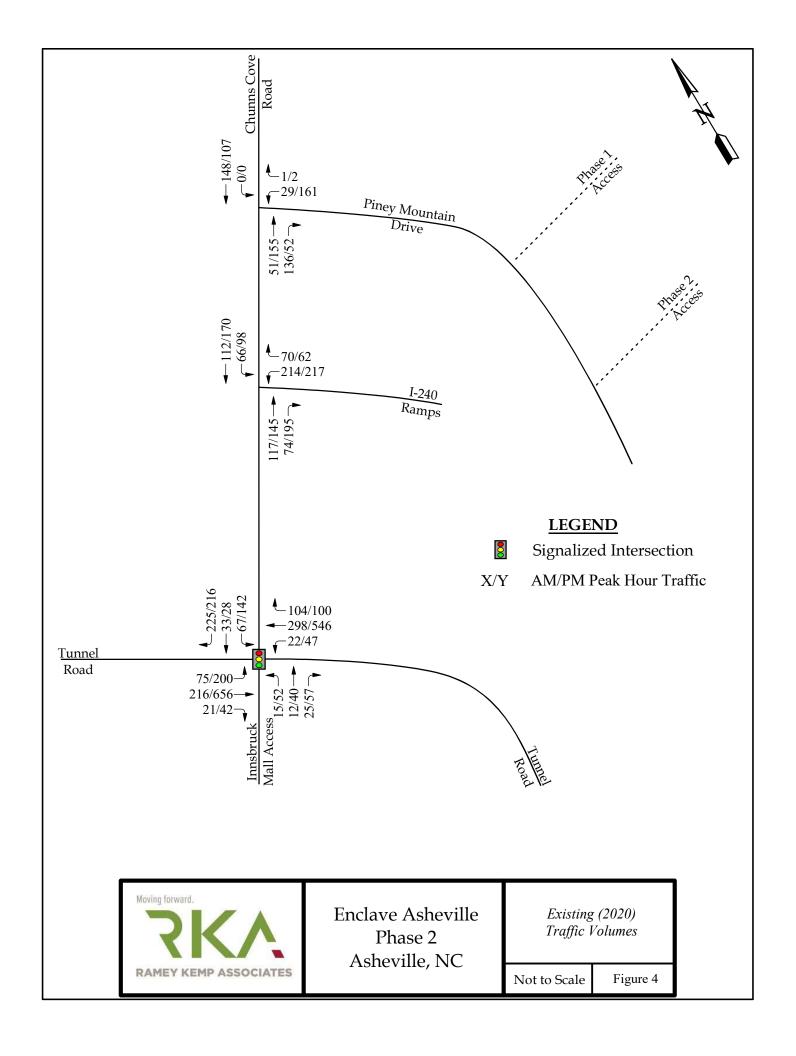
Subject: Re: [External] RE: Enclave Asheville Phase II (SC-2020-077)

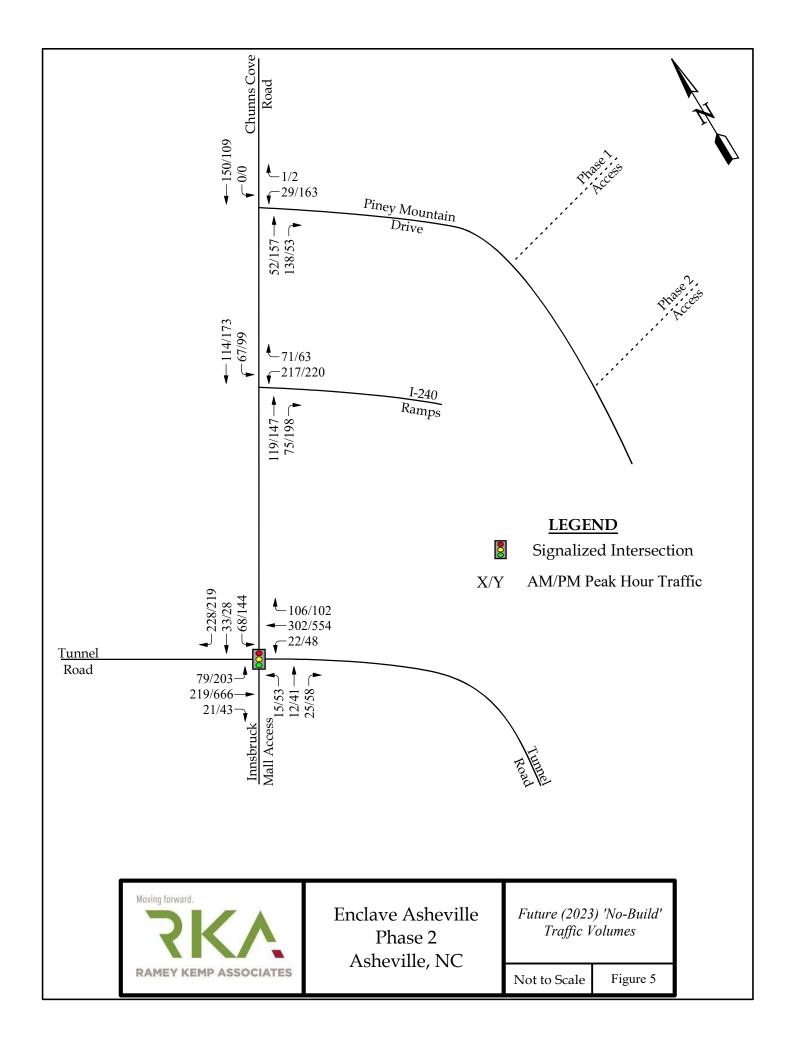
LEGEND

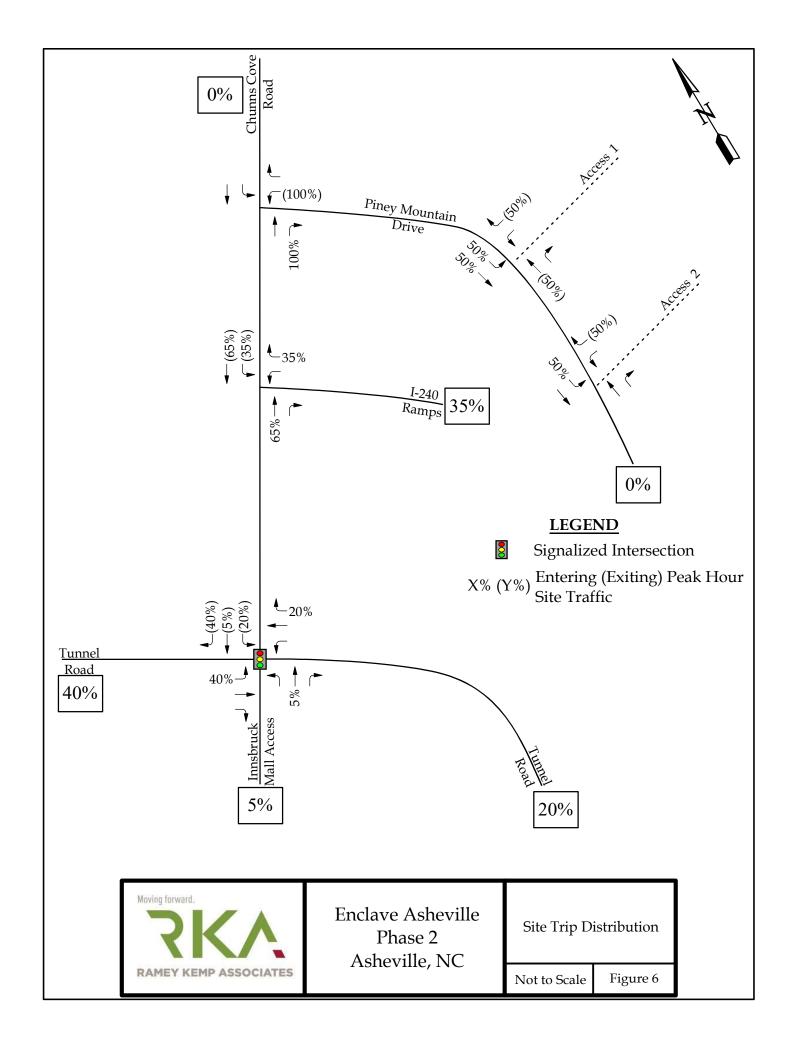
Site Location

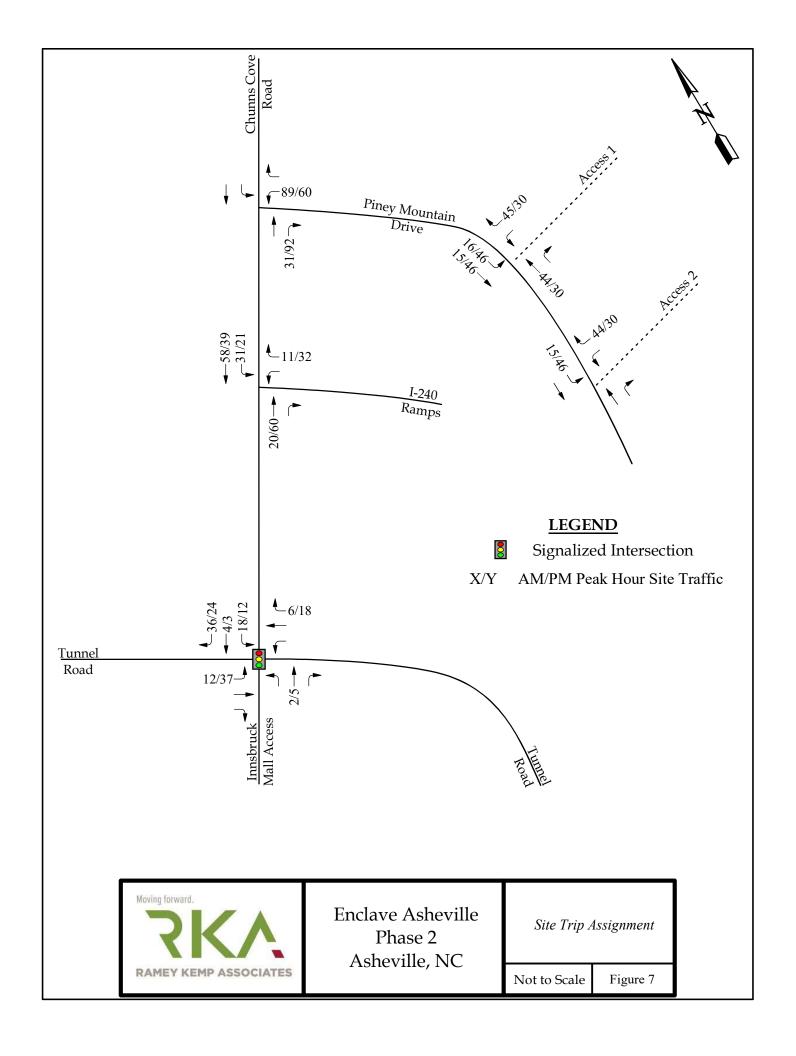
Existing Study Intersection

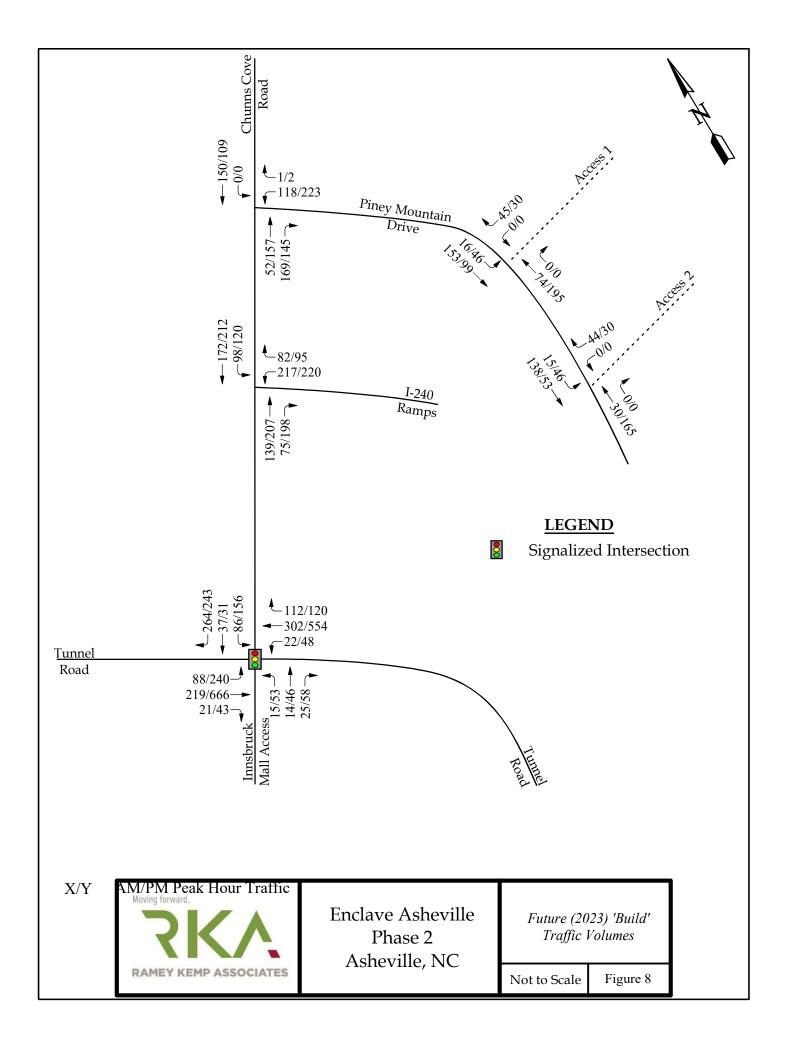


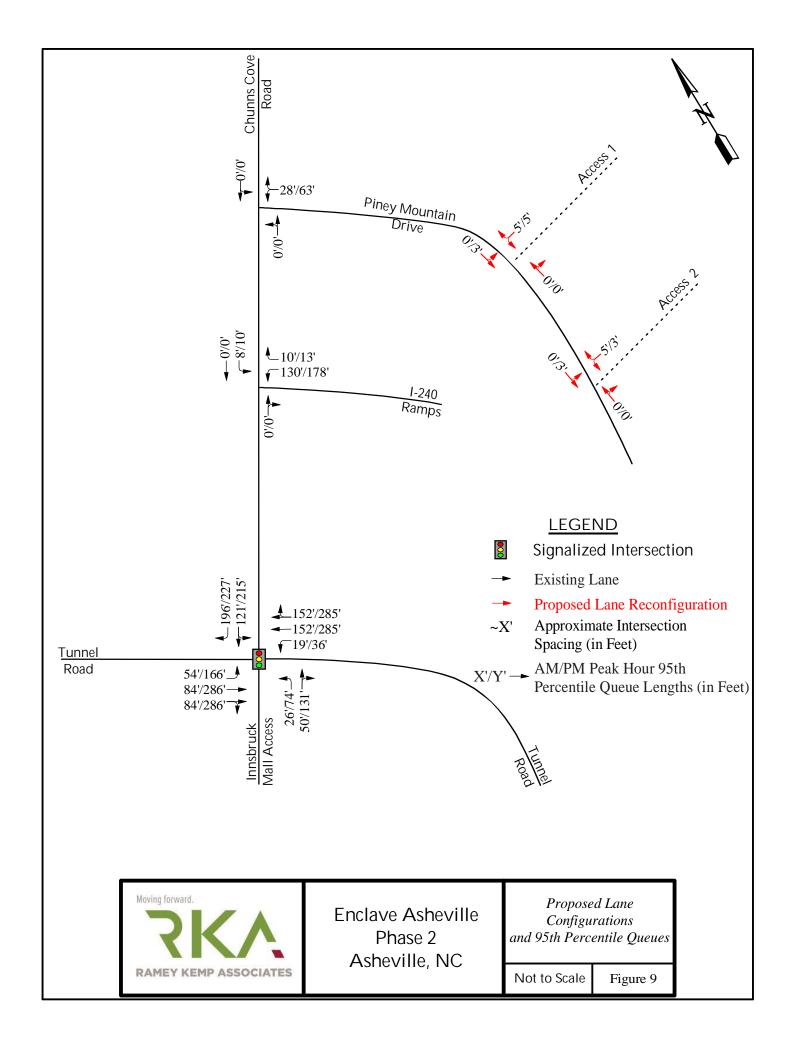

Enclave Asheville Phase 2 Asheville, NC

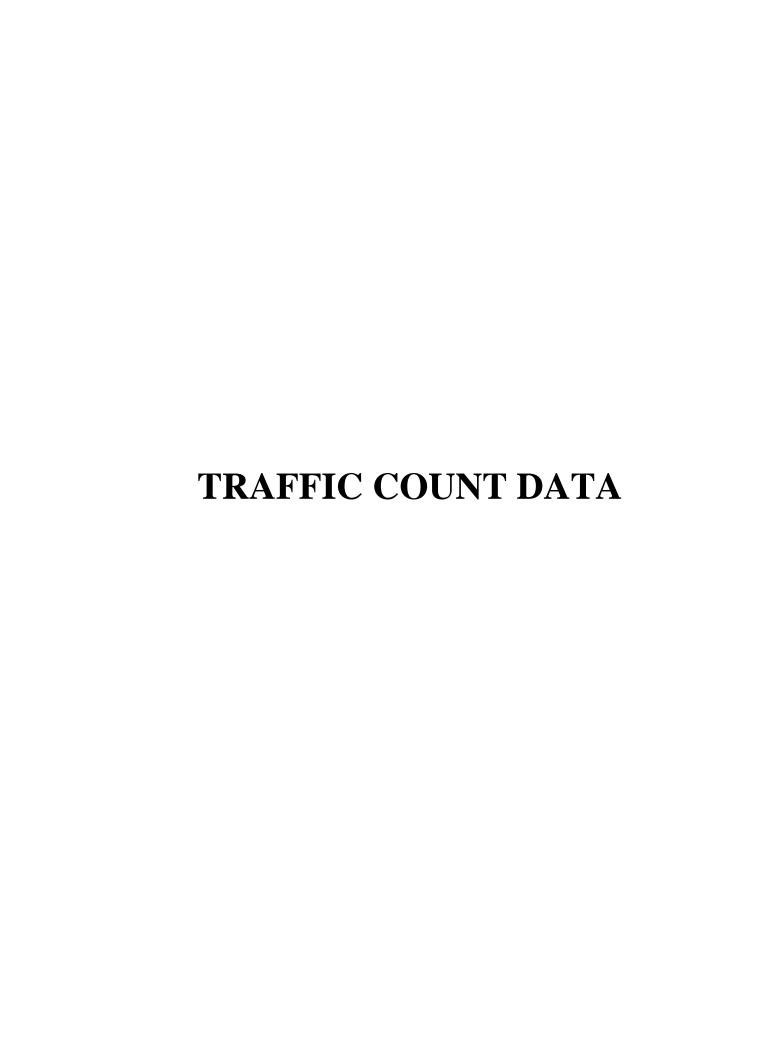

Site Location Map


Not to Scale


Figure 1







1202 Langdon Terrace Drive Raleigh, NC, 27615

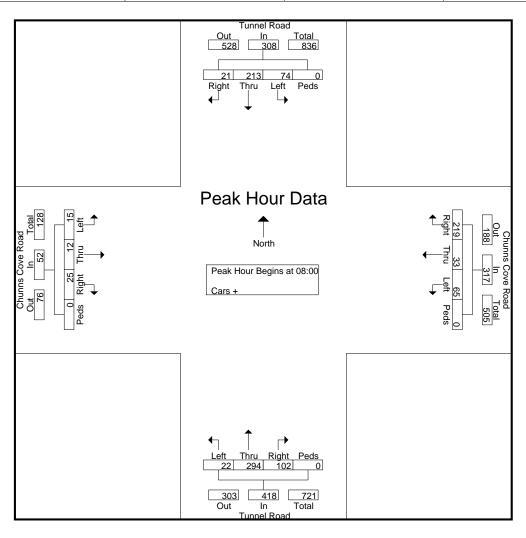
File Name: Tunnel Road and Chunns Cove Road AM Peak

Site Code:

Start Date : 3/23/2017

Page No : 1
Groups Printed- Cars +

		Tu	nnel R	load			Chunr	ns Cov	e Roa	d		Tu	nnel F	Road			Chunr	ns Cov	e Roa	d	
		So	outhbo	und			W	<u>estbo</u>	und			No	orthbo	und			E	<u>astbou</u>	ınd		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
07:00	0	2	0	0	2	22	2	11	0	35	19	30	6	0	55	0	0	0	0	0	92
07:15	0	32	8	0	40	31	8	6	0	45	18	49	3	0	70	2	3	2	0	7	162
07:30	5	29	19	0	53	51	1	15	0	67	27	55	4	0	86	5	3	4	0	12	218
07:45	2	36	17	0	55	70	5	20	0	95	16	75	1_	0	92	4	1_	3	0	8	250
Total	7	99	44	0	150	174	16	52	0	242	80	209	14	0	303	11	7	9	0	27	722
08:00	1	41	20	0	62	59	14	18	0	91	22	77	2	0	101	2	2	5	0	9	263
08:15	6	49	22	0	77	53	6	11	0	70	21	72	5	0	98	6	2	3	0	11	256
08:30	4	70	17	0	91	55	5	15	0	75	33	74	8	0	115	8	6	4	0	18	299
08:45	10	53	15	0	78	52	8	21	0	81	26	71	7	0	104	9	2	3	0	14	277
Total	21	213	74	0	308	219	33	65	0	317	102	294	22	0	418	25	12	15	0	52	1095
Grand Total	28	312	118	0	458	393	49	117	0	559	182	503	36	0	721	36	19	24	0	79	1817
Apprch %	6.1	68.1	25.8	0		70.3	8.8	20.9	0		25.2	69.8	5	0		45.6	24.1	30.4	0		
Total %	1.5	17.2	6.5	0	25.2	21.6	2.7	6.4	0	30.8	10	27.7	2	0	39.7	2	1	1.3	0	4.3	


1202 Langdon Terrace Drive Raleigh, NC, 27615

File Name: Tunnel Road and Chunns Cove Road AM Peak

Site Code:

Start Date : 3/23/2017

			nnel R				Chunr	ns Cov		ıd			nnel R				Chunr	ns Cov		d	
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left		App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	07:00	to 08:4	45 - Pea	k 1 of	1														
Peak Hour fo	r Entir	e Inters	section	n Begir	ns at 08:	00															
08:00	1	41	20	0	62	59	14	18	0	91	22	77	2	0	101	2	2	5	0	9	263
08:15	6	49	22	0	77	53	6	11	0	70	21	72	5	0	98	6	2	3	0	11	256
08:30	4	70	17	0	91	55	5	15	0	75	33	74	8	0	115	8	6	4	0	18	299
08:45	10	53	15	0	78	52	8	21	0	81	26	71	7	0	104	9	2	3	0	14	277
Total Volume	21	213	74	0	308	219	33	65	0	317	102	294	22	0	418	25	12	15	0	52	1095
% App. Total																					
PHF	.525	.761	.841	.000	.846	.928	.589	.774	.000	.871	.773	.955	.688	.000	.909	.694	.500	.750	.000	.722	.916

1202 Langdon Terrace Drive Raleigh, NC, 27615

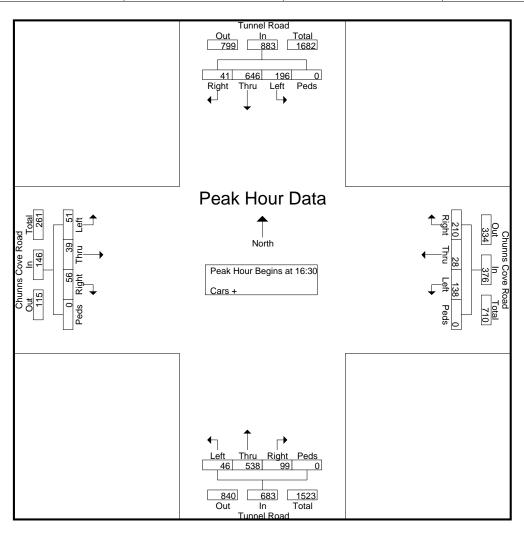
File Name: Tunnel Road and Chunns Cove Road PM Peak

Site Code:

Start Date : 3/23/2017

Page No : 1
Groups Printed- Cars +

		Tu	nnel R	Road			Chunn	s Cov	e Roa	d		Tu	nnel F	Road			Chunr	ns Cov	e Roa	d	
		So	outhbo	und			W	<u>estbo</u>	und			N	orthbo	und			E	<u>astbou</u>	ınd		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
16:00	9	130	54	0	193	48	8	24	0	80	29	128	10	0	167	8	9	15	0	32	472
16:15	10	143	39	0	192	48	8	24	0	80	21	100	10	0	131	16	8	7	0	31	434
16:30	7	143	53	0	203	49	2	42	0	93	24	121	6	0	151	13	8	15	0	36	483
16:45	12	158	52	0	222	54	6	36	0	96	20	136	9	0	165	14	9	12	0	35	518
Total	38	574	198	0	810	199	24	126	0	349	94	485	35	0	614	51	34	49	0	134	1907
17:00	9	159	44	0	212	47	8	26	0	81	32	157	18	0	207	13	13	13	0	39	539
17:15	13	186	47	0	246	60	12	34	0	106	23	124	13	0	160	16	9	11	0	36	548
17:30	7	147	38	0	192	43	7	31	0	81	20	125	9	0	154	11	12	15	0	38	465
17:45	8	148	50	0	206	47	5	26	0	78	24	113	12	0	149	7	12	5	0	24	457
Total	37	640	179	0	856	197	32	117	0	346	99	519	52	0	670	47	46	44	0	137	2009
Grand Total	75	1214	377	0	1666	396	56	243	0	695	193	1004	87	0	1284	98	80	93	0	271	3916
Apprch %	4.5	72.9	22.6	0		57	8.1	35	0		15	78.2	6.8	0		36.2	29.5	34.3	0		
Total %	1.9	31	9.6	0	42.5	10.1	1.4	6.2	0	17.7	4.9	25.6	2.2	0	32.8	2.5	2	2.4	0	6.9	


1202 Langdon Terrace Drive Raleigh, NC, 27615

File Name: Tunnel Road and Chunns Cove Road PM Peak

Site Code:

Start Date : 3/23/2017

			nnel R				Chunr	ns Cov		d			nnel R					ns Cov	e Roa	d	
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	16:00	to 17:4	45 - Pea	k 1 of	1														
Peak Hour fo	r Entir	e Inters	section	n Begir	ns at 16:	30															
16:30	7	143	53	0	203	49	2	42	0	93	24	121	6	0	151	13	8	15	0	36	483
16:45	12	158	52	0	222	54	6	36	0	96	20	136	9	0	165	14	9	12	0	35	518
17:00	9	159	44	0	212	47	8	26	0	81	32	157	18	0	207	13	13	13	0	39	539
17:15	13	186	47	0	246	60	12	34	0	106	23	124	13	0	160	16	9	11	0	36	548
Total Volume	41	646	196	0	883	210	28	138	0	376	99	538	46	0	683	56	39	51	0	146	2088
% App. Total																					
PHF	.788	.868	.925	.000	.897	.875	.583	.821	.000	.887	.773	.857	.639	.000	.825	.875	.750	.850	.000	.936	.953

1202 Langdon Terrace Drive Raleigh, NC, 27615

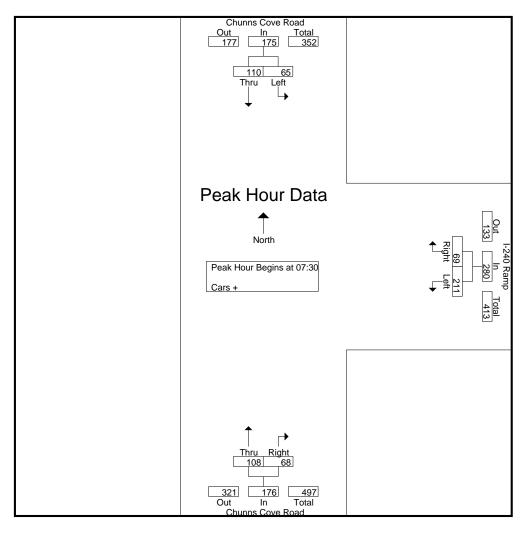
File Name: Chunns Cove Road and I-240 Ramp AM Peak

Site Code:

Start Date : 3/23/2017

Page No : 1
Groups Printed- Cars +

	Ch	unns Cove	Road		I-240 Ram)	Chi	unns Cove F	Road	
		Southboun	nd		Westbound	t		Northbound	b	
Start Time	Thru	Left	App. Total	Right	Left	App. Total	Right	Thru	App. Total	Int. Total
07:00	11	10	21	4	24	28	11	21	32	81
07:15	17	16	33	17	30	47	15	27	42	122
07:30	24	24	48	20	47	67	15	32	47	162
07:45	39	22	61	20	53	73	13	26	39	173
Total	91	72	163	61	154	215	54	106	160	538
08:00	19	13	32	16	67	83	22	25	47	162
08:15	28	6	34	13	44	57	18	25	43	134
08:30	31	12	43	9	47	56	17	39	56	155
08:45	34	14	48	10	42	52	13	39	52	152
Total	112	45	157	48	200	248	70	128	198	603
Grand Total Apprch %	203 63.4	117 36.6	320	109 23.5	354 76.5	463	124 34.6	234 65.4	358	1141
Total %		10.3	28	9.6	31	40.6	10.9	20.5	31.4	


1202 Langdon Terrace Drive Raleigh, NC, 27615

File Name: Chunns Cove Road and I-240 Ramp AM Peak

Site Code:

Start Date : 3/23/2017

	Ch	unns Cove F Southbound			I-240 Ram		Chi	unns Cove F Northbound		
Start Time	Thru	Left	App. Total	Right	Left	App. Total	Right	Thru	App. Total	Int. Total
Peak Hour Analysis Fro	om 07:00 to	08:45 - Peak	1 of 1	-			<u> </u>			
Peak Hour for Entire In	tersection B	egins at 07:3	80							
07:30	24	24	48	20	47	67	15	32	47	162
07:45	39	22	61	20	53	73	13	26	39	173
08:00	19	13	32	16	67	83	22	25	47	162
08:15	28	6	34	13	44	57	18	25	43	134
Total Volume	110	65	175	69	211	280	68	108	176	631
% App. Total	62.9	37.1		24.6	75.4		38.6	61.4		
PHF	.705	.677	.717	.863	.787	.843	.773	.844	.936	.912

1202 Langdon Terrace Drive Raleigh, NC, 27615

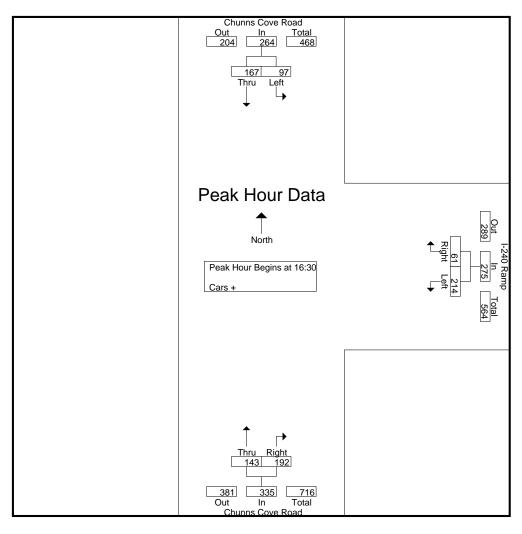
File Name: Chunns Cove Road and I-240 Ramp PM Peak

Site Code:

Start Date : 3/23/2017

Page No : 1
Groups Printed- Cars +

	Chi	unns Cove I	Road		I-240 Ramp)	Chu	ınns Cove F	Road	
		Southboun	d		Westbound	d		Northbound	k	
Start Time	Thru	Left	App. Total	Right	Left	App. Total	Right	Thru	App. Total	Int. Total
16:00	30	21	51	17	55	72	49	39	88	211
16:15	31	19	50	19	50	69	40	26	66	185
16:30	55	22	77	16	43	59	50	34	84	220
16:45	31	23	54	13	61	74	41	36	77	205
Total	147	85	232	65	209	274	180	135	315	821
17:00	39	22	61	19	47	66	53	37	90	217
17:15	42	30	72	13	63	76	48	36	84	232
17:30	37	15	52	11	48	59	33	30	63	174
17:45	24	10	34	14	44	58	36	44	80	172
Total	142	77	219	57	202	259	170	147	317	795
Grand Total Apprch %	289 64.1	162 35.9	451	122 22.9	411 77.1	533	350 55.4	282 44.6	632	1616
Total %	17.9	10	27.9	7.5	25.4	33	21.7	17.5	39.1	


1202 Langdon Terrace Drive Raleigh, NC, 27615

File Name: Chunns Cove Road and I-240 Ramp PM Peak

Site Code:

Start Date : 3/23/2017

	Ch	unns Cove F Southbound			I-240 Ram Westbound	•	Ch	unns Cove F Northbound		
Start Time	Thru	Left	App. Total	Right	Left	App. Total	Right	Thru	App. Total	Int. Total
Peak Hour Analysis Fro	om 16:00 to	17:45 - Peak	(1 of 1	_			_			
Peak Hour for Entire In	tersection B	egins at 16:3	80							
16:30	55	22	77	16	43	59	50	34	84	220
16:45	31	23	54	13	61	74	41	36	77	205
17:00	39	22	61	19	47	66	53	37	90	217
17:15	42	30	72	13	63	76	48	36	84	232
Total Volume	167	97	264	61	214	275	192	143	335	874
% App. Total	63.3	36.7		22.2	77.8		57.3	42.7		
PHF	.759	.808	.857	.803	.849	.905	.906	.966	.931	.942

1202 Langdon Terrace Drive Raleigh, NC, 27615

File Name: Chunns Cove Road and Piney Mountain Drive AM Peak

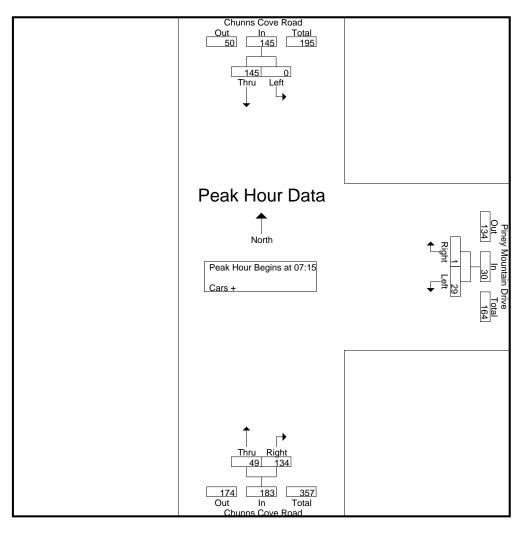
Site Code:

Start Date : 3/23/2017

Page No : 1

Groups Printed- Cars +

	Chu	ınns Cove R	Road	Pine	ey Mountain	Drive	Chu	ınns Cove F	Road	
		Southbound			Westbound			Northbound		
Start Time	Thru	Left	App. Total	Right	Left	App. Total	Right	Thru	App. Total	Int. Total
07:00	17	0	17	0	4	4	16	9	25	46
07:15	30	0	30	0	3	3	34	10	44	77
07:30	43	0	43	0	5	5	38	14	52	100
07:45	50	0	50	0	11	11	28	18	46	107_
Total	140	0	140	0	23	23	116	51	167	330
08:00	22	0	22	1	10	11	34	7	41	74
08:15	27	0	27	0	7	7	28	10	38	72
08:30	35	0	35	0	8	8	37	11	48	91
08:45	38	0	38	0	10	10	30	19	49	97_
Total	122	0	122	1	35	36	129	47	176	334
	I.								1	
Grand Total	262	0	262	1	58	59	245	98	343	664
Apprch %	100	0		1.7	98.3		71.4	28.6		
Total %	39.5	0	39.5	0.2	8.7	8.9	36.9	14.8	51.7	


1202 Langdon Terrace Drive Raleigh, NC, 27615

File Name: Chunns Cove Road and Piney Mountain Drive AM Peak

Site Code:

Start Date : 3/23/2017

	Ch	unns Cove F Southbound		Pine	ey Mountain Westbound		Ch	unns Cove F Northbound		
Start Time	Thru	Left	App. Total	Right	Left	App. Total	Right	Thru	App. Total	Int. Total
Peak Hour Analysis Fro	om 07:00 to	08:45 - Peak	< 1 of 1	-			-			
Peak Hour for Entire In	tersection B	egins at 07:1	15							
07:15	30	0	30	0	3	3	34	10	44	77
07:30	43	0	43	0	5	5	38	14	52	100
07:45	50	0	50	0	11	11	28	18	46	107
08:00	22	0	22	1	10	11	34	7	41	74
Total Volume	145	0	145	1	29	30	134	49	183	358
% App. Total	100	0		3.3	96.7		73.2	26.8		
PHF	.725	.000	.725	.250	.659	.682	.882	.681	.880	.836

1202 Langdon Terrace Drive Raleigh, NC, 27615

File Name: Chunns Cove Road and Piney Mountain Drive PM Peak

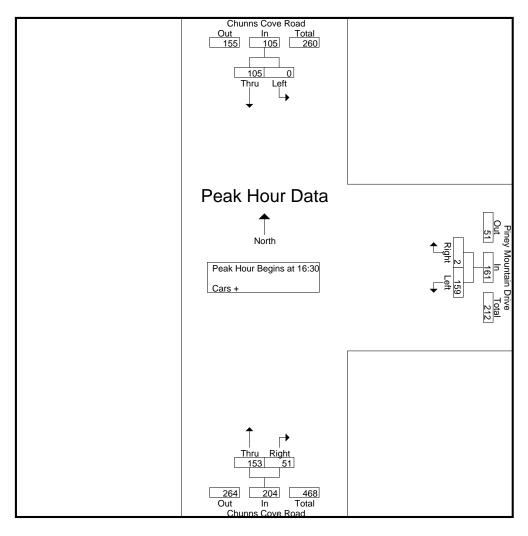
Site Code:

Start Date : 3/23/2017

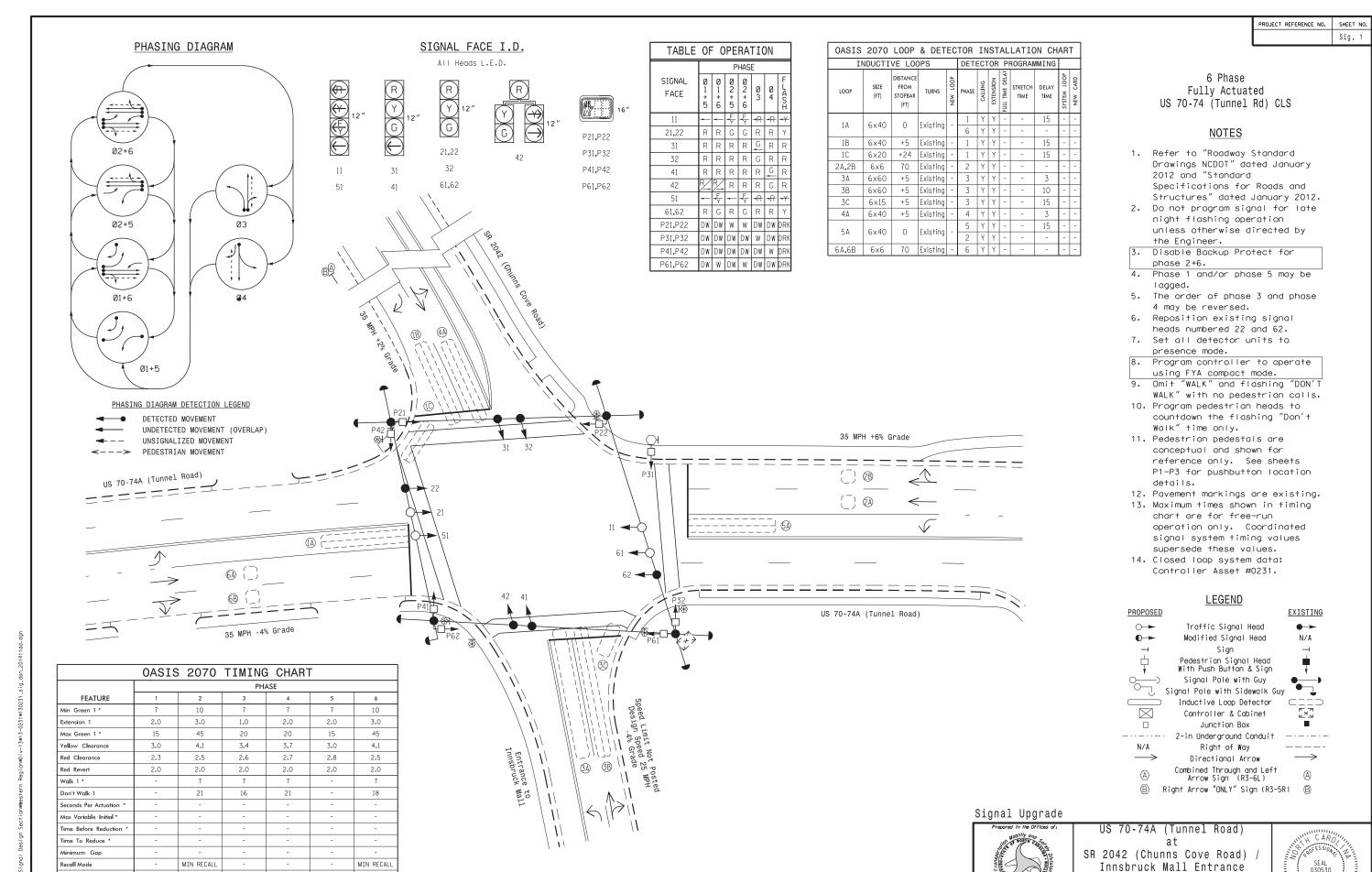
Page No : 1

Groups Printed- Cars +

	Ch	unns Cove F	Road	Pine	ey Mountain	Drive	Chu	ınns Cove F	Road	
		Southbound			Westbound			Northbound		
Start Time	Thru	Left	App. Total	Right	Left	App. Total	Right	Thru	App. Total	Int. Total
16:00	21	0	21	0	30	30	24	32	56	107
16:15	18	2	20	0	32	32	18	27	45	97
16:30	26	0	26	0	51	51	17	33	50	127
16:45	19	0	19	0	35	35	15	34	49	103_
Total	84	2	86	0	148	148	74	126	200	434
	1									
17:00	26	0	26	2	35	37	10	46	56	119
17:15	34	0	34	0	38	38	9	40	49	121
17:30	25	0	25	0	27	27	9	32	41	93
17:45	23	0	23	0	11	11	11	47	58	92_
Total	108	0	108	2	111	113	39	165	204	425
Grand Total	400	2	404	0	250	004	140	204	404	050
	192	2	194	2	259	261	113	291	404	859
Apprch %		1	00.0	0.8	99.2	00.4	28	72	47	
Total %	22.4	0.2	22.6	0.2	30.2	30.4	13.2	33.9	47	


1202 Langdon Terrace Drive Raleigh, NC, 27615

File Name: Chunns Cove Road and Piney Mountain Drive PM Peak


Site Code:

Start Date : 3/23/2017

		unns Cove R Southbound		Pine	y Mountain Westbound	-	Ch	unns Cove F Northbound		
		Southbouria			Mesiponic	ı		Northbourit	J	
Start Time	Thru	Left	App. Total	Right	Left	App. Total	Right	Thru	App. Total	Int. Total
Peak Hour Analysis Fro	m 16:00 to 1	7:45 - Peak	1 of 1	_			_			
Peak Hour for Entire Int	tersection Be	gins at 16:30	0							
16:30	26	0	26	0	51	51	17	33	50	127
16:45	19	0	19	0	35	35	15	34	49	103
17:00	26	0	26	2	35	37	10	46	56	119
17:15	34	0	34	0	38	38	9	40	49	121
Total Volume	105	0	105	2	159	161	51	153	204	470
% App. Total	100	0		1.2	98.8		25	75		
PHF	.772	.000	.772	.250	.779	.789	.750	.832	.911	.925

SIGNAL PLAN & TIMING INFORMATION

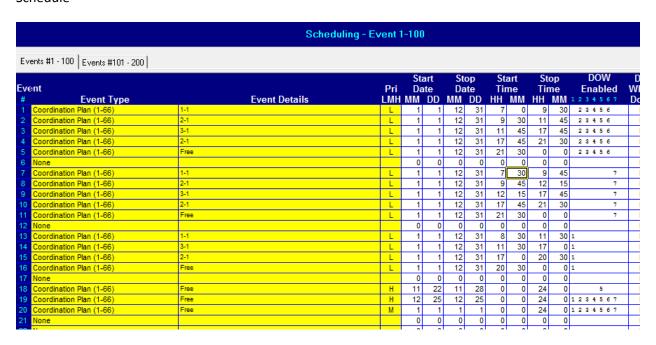
YELLOW

Vehicle Call Memory

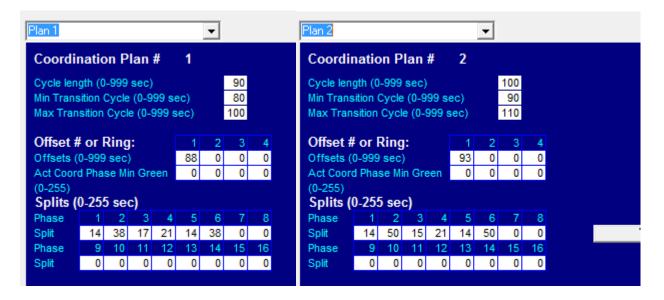
YELLOW

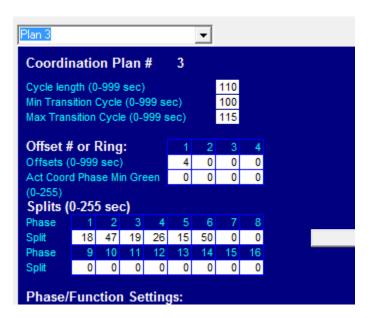
ON

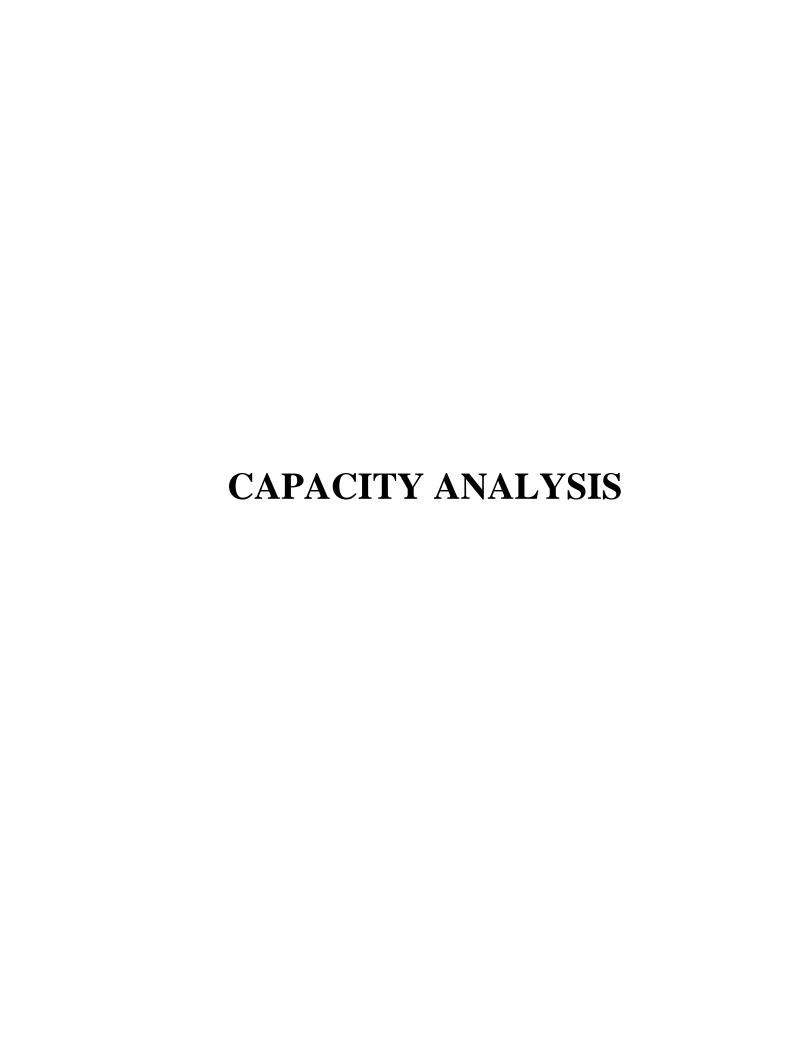
These values may be field adjusted. Do not adjust Min Green and Extension times for phases 2 and 6 lower than what


SEAL 030530

PLAN DATE: November 2014 REVIEWED BY: Z.M. Little PREPARED BY: C.L. Sweeney REVIEWED BY:


Buncombe County


Zachery 17. Kittle 1/16/201


Schedule

Coordination Plans

TUNNEL ROAD (US 70/74A) & CHUNNS COVE ROAD (SR 2244)

Enclave Asheville - Phase 2 1: Tunnel Road & Innsbruck Mall Access/Chunns Cove Road

	•	-	7	1	•	*	4	†	1	1	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	ĵ»			ર્ન	7	*	↑ ↑		*	↑ ↑	
Traffic Volume (vph)	15	12	25	67	33	225	22	298	104	75	216	21
Future Volume (vph)	15	12	25	67	33	225	22	298	104	75	216	21
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		-4%			2%			6%			-4%	
Storage Length (ft)	0		0	450		0	100		0	100		0
Storage Lanes	1		0	1		1	1		0	1		0
Taper Length (ft)	25			200			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.899				0.850		0.961			0.987	
Flt Protected	0.950				0.968		0.950			0.950		
Satd. Flow (prot)	1805	1708	0	0	1785	1567	1717	3229	0	1805	3470	0
Flt Permitted	0.950				0.968		0.580			0.416		
Satd. Flow (perm)	1805	1708	0	0	1785	1567	1048	3229	0	790	3470	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		25			35			35			35	
Link Distance (ft)		1042			1213			1288			1065	
Travel Time (s)		28.4			23.6			25.1			20.7	
Peak Hour Factor	0.72	0.72	0.72	0.87	0.87	0.87	0.91	0.91	0.91	0.85	0.85	0.85
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	5%	2%	2%	5%	2%
Adj. Flow (vph)	21	17	35	77	38	259	24	327	114	88	254	25
Shared Lane Traffic (%)												
Lane Group Flow (vph)	21	52	0	0	115	259	24	441	0	88	279	0
Turn Type	Split	NA		Split	NA	pm+ov	pm+pt	NA		pm+pt	NA	
Protected Phases	3	3		4	4	1	5	2		1	6	
Permitted Phases						4	2			6		
Detector Phase	3	3		4	4	1	5	2		1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	7.0	10.0		7.0	10.0	
Minimum Split (s)	29.0	29.0		34.0	34.0	14.0	14.0	38.0		14.0	34.0	
Total Split (s)	20.0	20.0		19.0	19.0	16.0	16.0	35.0		16.0	35.0	
Total Split (%)	22.2%	22.2%		21.1%	21.1%	17.8%	17.8%	38.9%		17.8%	38.9%	
Yellow Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0		5.0	5.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0			-2.0	-2.0	-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	5.0	5.0			5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lead		Lag	Lag	Lead	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None		None	None	None	None	C-Min		None	C-Min	
Act Effct Green (s)	9.6	9.6			12.4	25.0	52.2	43.2		57.0	54.0	
Actuated g/C Ratio	0.11	0.11			0.14	0.28	0.58	0.48		0.63	0.60	
v/c Ratio	0.11	0.29			0.47	0.60	0.04	0.28		0.14	0.13	
Control Delay	37.3	41.2			41.4	33.0	9.5	17.3		9.5	12.9	
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	37.3	41.2			41.4	33.0	9.5	17.3		9.5	12.9	
LOS	D	D			D	C	A	В		A	В	
Approach Delay		40.1			35.6			16.9			12.1	
Approach LOS	44	D			D	405	_	В		4.0	В	
Queue Length 50th (ft)	11	28			61	125	5	82		19	33	
Queue Length 95th (ft)	26	49			104	175	18	139		44	80	
Internal Link Dist (ft)		962			1133		100	1208		100	985	
Turn Bay Length (ft)	200	204			207	457	100	1551		100	2002	
Base Capacity (vph)	300	284			287	456	713	1551		635	2082	

Enclave Asheville - Phase 2

1: Tunnel Road & Innsbruck Mall Access/Chunns Cove Road

Existing (2020)
Timing Plan: AM Peak

	•	-	*	1	•	*	1	†	1	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Starvation Cap Reductn	0	0			0	0	0	0		0	0	
Spillback Cap Reductn	0	0			0	0	0	0		0	0	
Storage Cap Reductn	0	0			0	0	0	0		0	0	
Reduced v/c Ratio	0.07	0.18			0.40	0.57	0.03	0.28		0.14	0.13	

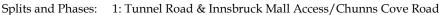
Intersection Summary

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 81 (90%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green


Natural Cycle: 115

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.60

Intersection Signal Delay: 22.3 Intersection Capacity Utilization 43.8% Intersection LOS: C ICU Level of Service A

Analysis Period (min) 15

1: Tunnel Road & Innsbruck Mall Access/Chunns Cove Road

	•	-	7	1	←	•	1	†	1	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f)			4	7	*	† 1>		*	† 1>	
Traffic Volume (vph)	52	40	57	142	28	216	47	546	100	200	656	42
Future Volume (vph)	52	40	57	142	28	216	47	546	100	200	656	42
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		-4%			2%			6%			-4%	
Storage Length (ft)	0		0	450		0	100		0	100		0
Storage Lanes	1		0	1		1	1		0	1		0
Taper Length (ft)	25			250			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt	0.050	0.912			0.060	0.850	0.050	0.977		0.050	0.991	
Flt Protected	0.950	1500	0	0	0.960	1565	0.950	0070	0	0.950	0.401	0
Satd. Flow (prot)	1805	1733	0	0	1770	1567	1717	3273	0	1805	3481	0
Flt Permitted	0.950 1805	1733	0	0	0.960 1770	1567	0.312 564	3273	0	0.227 431	3481	0
Satd. Flow (perm) Right Turn on Red	1603	1733	No	U	1//0	1567 No	364	32/3	No	431	3401	No
Satd. Flow (RTOR)			INO			NO			INO			110
Link Speed (mph)		25			35			35			35	
Link Distance (ft)		1042			1213			1288			1065	
Travel Time (s)		28.4			23.6			25.1			20.7	
Peak Hour Factor	0.94	0.94	0.94	0.89	0.89	0.89	0.83	0.83	0.83	0.90	0.90	0.90
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	5%	2%	2%	5%	2%
Adj. Flow (vph)	55	43	61	160	31	243	57	658	120	222	729	47
Shared Lane Traffic (%)												
Lane Group Flow (vph)	55	104	0	0	191	243	57	778	0	222	776	0
Turn Type	Split	NA		Split	NA	pm+ov	pm+pt	NA		pm+pt	NA	
Protected Phases	3	3		4	4	1	5	2		1	6	
Permitted Phases						4	2			6		
Detector Phase	3	3		4	4	1	5	2		1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	7.0	10.0		7.0	10.0	
Minimum Split (s)	29.0	29.0		34.0	34.0	14.0	14.0	38.0		14.0	34.0	
Total Split (s)	24.0	24.0		23.0	23.0	23.0	17.0	40.0		23.0	46.0	
Total Split (%)	21.8%	21.8%		20.9%	20.9%	20.9%	15.5%	36.4%		20.9%	41.8%	
Yellow Time (s) All-Red Time (s)	5.0 2.0	5.0 2.0		5.0 2.0	5.0 2.0	5.0 2.0	5.0 2.0	5.0 2.0		5.0 2.0	5.0 2.0	
Lost Time Adjust (s)	-2.0	-2.0		2.0	-2.0 -2.0	-2.0	-2.0 -2.0	-2.0 -2.0		-2.0	-2.0 -2.0	
Total Lost Time (s)	5.0	5.0			5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lead		Lag	Lag	Lead	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None		None	None	None	None	C-Min		None	C-Min	
Act Effct Green (s)	12.4	12.4		- 10-10	17.4	36.2	55.6	46.4		64.7	53.8	
Actuated g/C Ratio	0.11	0.11			0.16	0.33	0.51	0.42		0.59	0.49	
v/c Ratio	0.27	0.53			0.68	0.47	0.15	0.56		0.52	0.46	
Control Delay	46.8	55.4			56.2	31.4	12.9	28.2		16.3	21.7	
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	46.8	55.4			56.2	31.4	12.9	28.2		16.3	21.7	
LOS	D	E			E	C	В	C		В	C	
Approach Delay		52.4			42.3			27.1			20.5	
Approach LOS		D			D			С			С	
Queue Length 50th (ft)	36	71			128	132	16	219		69	194	
Queue Length 95th (ft)	73	122			199	188	36	295		127	285	
Internal Link Dist (ft)		962			1133		400	1208		400	985	
Turn Bay Length (ft)	011	200			207	EDE	100	1200		100	1701	
Base Capacity (vph)	311	299			306	575	425	1380		480	1701	

Enclave Asheville - Phase 2

1: Tunnel Road & Innsbruck Mall Access/Chunns Cove Road

Existing (2020)
Timing Plan: PM Peak

	•	-	*	1	•	*	1	†	1	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Starvation Cap Reductn	0	0			0	0	0	0		0	0	
Spillback Cap Reductn	0	0			0	0	0	0		0	0	
Storage Cap Reductn	0	0			0	0	0	0		0	0	
Reduced v/c Ratio	0.18	0.35			0.62	0.42	0.13	0.56		0.46	0.46	

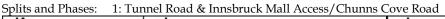
Intersection Summary

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

Offset: 21 (19%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green


Natural Cycle: 115

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.68 Intersection Signal Delay: 28.8 Intersection Capacity Utilization 57.9%

Intersection LOS: C ICU Level of Service B

Analysis Period (min) 15

No-Build (2023) Timing Plan: AM Peak

1: Tunnel Road & Innsbruck Mall Access/Chunns Cove Road

	•	→	•	1	←	•	1	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)			र्स	7	×	†		7	†	
Traffic Volume (vph)	15	12	25	68	33	228	22	302	106	76	219	21
Future Volume (vph)	15	12	25	68	33	228	22	302	106	76	219	21
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		-4%			2%			6%			-4%	
Storage Length (ft)	0		0	450		0	100		0	100		0
Storage Lanes	1		0	1		1	1		0	1		0
Taper Length (ft)	25			200			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.899				0.850		0.961			0.987	
Flt Protected	0.950				0.967		0.950			0.950		
Satd. Flow (prot)	1805	1708	0	0	1783	1567	1717	3229	0	1805	3470	0
Flt Permitted	0.950				0.967		0.578			0.411		
Satd. Flow (perm)	1805	1708	0	0	1783	1567	1044	3229	0	781	3470	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		25			35			35			35	
Link Distance (ft)		386			1213			1288			1065	
Travel Time (s)		10.5			23.6			25.1			20.7	
Peak Hour Factor	0.72	0.72	0.72	0.87	0.87	0.87	0.91	0.91	0.91	0.85	0.85	0.85
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	5%	2%	2%	5%	2%
Adj. Flow (vph)	21	17	35	78	38	262	24	332	116	89	258	25
Shared Lane Traffic (%)												
Lane Group Flow (vph)	21	52	0	0	116	262	24	448	0	89	283	0
Turn Type	Split	NA		Split	NA	pm+ov	pm+pt	NA		pm+pt	NA	
Protected Phases	3	3		4	4	1	5	2		1	6	
Permitted Phases						4	2	_		6		
Detector Phase	3	3		4	4	1	5	2		1	6	
Switch Phase	7.0	7.0		7.0	7.0	7.0	7.0	40.0		7.0	40.0	
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	7.0	10.0		7.0	10.0	
Minimum Split (s)	30.0	30.0		35.0	35.0	14.0	14.0	38.0		14.0	35.0	
Total Split (s)	17.0	17.0		21.0	21.0	14.0	14.0	38.0		14.0	38.0	
Total Split (%)	18.9%	18.9%		23.3%	23.3%	15.6%	15.6%	42.2%		15.6%	42.2%	
Yellow Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0		5.0	5.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0 5.0	-2.0 5.0			-2.0 5.0	-2.0 5.0	-2.0	-2.0		-2.0 5.0	-2.0 5.0	
Total Lost Time (s)				Log			5.0	5.0			5.0	
Lead/Lag Lead-Lag Optimize?	Lead	Lead Yes		Lag	Lag	Lead Yes	Lead Yes	Lag Yes		Lead	Lag	
Recall Mode	Yes None	None		Yes None	Yes	None		C-Min		Yes None	Yes C-Min	
Act Effct Green (s)	9.6	9.6		None	None 12.5	25.1	None 52.1	43.1		56.9	53.9	
Actuated g/C Ratio	0.11	0.11			0.14	0.28	0.58	0.48		0.63	0.60	
v/c Ratio	0.11	0.11			0.14	0.20	0.04	0.40		0.03	0.00	
Control Delay	37.3	41.2			41.3	33.0	9.5	17.5		9.6	13.0	
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	37.3	41.2			41.3	33.0	9.5	17.5		9.6	13.0	
LOS	37.3 D	41.2 D			41.3 D	33.0 C	9.5 A	17.5 B		9.0 A	13.0 B	
Approach Delay	D	40.1			35.5	C	Α.	17.1		A	12.2	
Approach LOS		40.1 D			33.5 D			17.1 B			12.2 B	
Apploacii LOS		ט			ט			D			D	

1: Tunnel Road & Innsbruck Mall Access/Chunns Cove Road

	۶	→	•	1	←	•	4	†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)	11	28			62	126	5	84		20	34	
Queue Length 95th (ft)	26	49			104	176	18	142		45	81	
Internal Link Dist (ft)		306			1133			1208			985	
Turn Bay Length (ft)							100			100		
Base Capacity (vph)	240	227			318	437	671	1558		613	2079	
Starvation Cap Reductn	0	0			0	0	0	0		0	0	
Spillback Cap Reductn	0	0			0	0	0	0		0	0	
Storage Cap Reductn	0	0			0	0	0	0		0	0	
Reduced v/c Ratio	0.09	0.23			0.36	0.60	0.04	0.29		0.15	0.14	

Intersection Summary

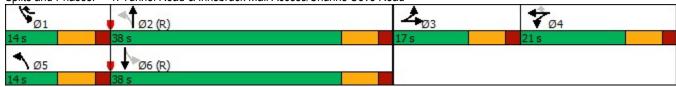
Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 88 (98%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 120


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.60 Intersection Signal Delay: 22.4 Intersection Capacity Utilization 44.2%

Intersection LOS: C
ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 1: Tunnel Road & Innsbruck Mall Access/Chunns Cove Road

No-Build (2023) Timing Plan: PM Peak

Enclave Asheville 1: Tunnel Road & Innsbruck Mall Access/Chunns Cove Road

	٠	-	•	1	•	*	1	†	-	1	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	ĵ»			र्स	7	٦	†		ሻ	†	
Traffic Volume (vph)	53	41	58	144	28	219	48	554	102	203	666	43
Future Volume (vph)	53	41	58	144	28	219	48	554	102	203	666	43
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		-4%			2%			6%			-4%	
Storage Length (ft)	0		0	450		0	100		0	100		0
Storage Lanes	1		0	1		1	1		0	1		0
Taper Length (ft)	25			200			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.912				0.850		0.977			0.991	
Flt Protected	0.950				0.960		0.950			0.950		
Satd. Flow (prot)	1805	1733	0	0	1770	1567	1717	3273	0	1805	3481	0
Flt Permitted	0.950				0.960		0.296			0.230		
Satd. Flow (perm)	1805	1733	0	0	1770	1567	535	3273	0	437	3481	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		25			35			35			35	
Link Distance (ft)		386			1213			1288			1065	
Travel Time (s)		10.5			23.6			25.1			20.7	
Peak Hour Factor	0.94	0.94	0.94	0.89	0.89	0.89	0.83	0.83	0.83	0.90	0.90	0.90
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	5%	2%	2%	5%	2%
Adj. Flow (vph)	56	44	62	162	31	246	58	667	123	226	740	48
Shared Lane Traffic (%)												
Lane Group Flow (vph)	56	106	0	0	193	246	58	790	0	226	788	0
Turn Type	Split	NA		Split	NA	pm+ov	pm+pt	NA		pm+pt	NA	
Protected Phases	3	3		4	4	1	5	2		1	6	
Permitted Phases						4	2			6		
Detector Phase	3	3		4	4	1	5	2		1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	7.0	10.0		7.0	10.0	
Minimum Split (s)	30.0	30.0		35.0	35.0	14.0	14.0	38.0		14.0	35.0	
Total Split (s)	19.0	19.0		26.0	26.0	18.0	15.0	47.0		18.0	50.0	
Total Split (%)	17.3%	17.3%		23.6%	23.6%	16.4%	13.6%	42.7%		16.4%	45.5%	
Yellow Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0		5.0	5.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0			-2.0	-2.0	-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	5.0	5.0			5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lead		Lag	Lag	Lead	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None		None	None	None	None	C-Min		None	C-Min	
Act Effct Green (s)	12.3	12.3			17.6	34.9	57.0	47.8		63.9	53.7	
Actuated g/C Ratio	0.11	0.11			0.16	0.32	0.52	0.43		0.58	0.49	
v/c Ratio	0.28	0.55			0.68	0.49	0.15	0.56		0.56	0.46	
Control Delay	47.3	56.5			55.6	33.2	12.7	26.7		17.3	21.9	
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	47.3	56.5			55.6	33.2	12.7	26.7		17.3	21.9	
LOS	D	Е			E	С	В	С		В	С	
Approach Delay		53.3			43.1			25.7			20.9	
Approach LOS		D			D			С			С	

1: Tunnel Road & Innsbruck Mall Access/Chunns Cove Road

	•	→	•	1	•	*	1	†	-	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)	37	72			129	137	17	219		71	200	
Queue Length 95th (ft)	74	125			198	204	37	278		128	289	
Internal Link Dist (ft)		306			1133			1208			985	
Turn Bay Length (ft)							100			100		
Base Capacity (vph)	236	226			337	514	388	1447		422	1709	
Starvation Cap Reductn	0	0			0	0	0	0		0	0	
Spillback Cap Reductn	0	0			0	0	0	0		0	0	
Storage Cap Reductn	0	0			0	0	0	0		0	0	
Reduced v/c Ratio	0.24	0.47			0.57	0.48	0.15	0.55		0.54	0.46	

Intersection Summary

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

Offset: 4 (4%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 120

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.68 Intersection Signal Delay: 28.6 Intersection Capacity Utilization 58.4%

Intersection LOS: C ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 1: Tunnel Road & Innsbruck Mall Access/Chunns Cove Road

Build (2023) Timing Plan: AM Peak 1: Tunnel Road & Innsbruck Mall Access/Chunns Cove Road

	۶	→	*	•	←	•	1	†	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)			र्स	7	7	↑ ↑		7	↑ ↑	
Traffic Volume (vph)	15	14	25	86	37	264	22	302	112	88	219	21
Future Volume (vph)	15	14	25	86	37	264	22	302	112	88	219	21
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		-4%			2%			6%			-4%	
Storage Length (ft)	0		0	450		0	100		0	100		0
Storage Lanes	1		0	1		1	1		0	1		0
Taper Length (ft)	25			200			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.903				0.850		0.959			0.987	
Flt Protected	0.950				0.966		0.950			0.950		
Satd. Flow (prot)	1805	1716	0	0	1781	1567	1717	3223	0	1805	3470	0
Flt Permitted	0.950				0.966		0.578			0.402		
Satd. Flow (perm)	1805	1716	0	0	1781	1567	1044	3223	0	764	3470	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		25			35			35			35	
Link Distance (ft)		386			1213			1288			1065	
Travel Time (s)		10.5			23.6			25.1			20.7	
Peak Hour Factor	0.72	0.72	0.72	0.87	0.87	0.87	0.91	0.91	0.91	0.85	0.85	0.85
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	5%	2%	2%	5%	2%
Adj. Flow (vph)	21	19	35	99	43	303	24	332	123	104	258	25
Shared Lane Traffic (%)												
Lane Group Flow (vph)	21	54	0	0	142	303	24	455	0	104	283	0
Turn Type	Split	NA		Split	NA	pm+ov	pm+pt	NA		pm+pt	NA	
Protected Phases	3	3		4	4	1	5	2		1	6	
Permitted Phases						4	2			6		
Detector Phase	3	3		4	4	1	5	2		1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	7.0	10.0		7.0	10.0	
Minimum Split (s)	30.0	30.0		35.0	35.0	14.0	14.0	38.0		14.0	35.0	
Total Split (s)	17.0	17.0		21.0	21.0	14.0	14.0	38.0		14.0	38.0	
Total Split (%)	18.9%	18.9%		23.3%	23.3%	15.6%	15.6%	42.2%		15.6%	42.2%	
Yellow Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0		5.0	5.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0			-2.0	-2.0	-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	5.0	5.0			5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lead		Lag	Lag	Lead	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None		None	None	None	None	C-Min		None	C-Min	
Act Effct Green (s)	9.6	9.6			13.6	28.3	48.9	39.9		53.3	49.0	
Actuated g/C Ratio	0.11	0.11			0.15	0.31	0.54	0.44		0.59	0.54	
v/c Ratio	0.11	0.30			0.53	0.62	0.04	0.32		0.18	0.15	
Control Delay	37.2	41.2			41.8	31.4	10.3	19.3		10.5	14.1	
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	37.2	41.2			41.8	31.4	10.3	19.3		10.5	14.1	
LOS	D	D			D	С	В	B		В	B	
Approach Delay		40.1			34.7			18.8			13.1	
Approach LOS		D			С			В			В	

1: Tunnel Road & Innsbruck Mall Access/Chunns Cove Road

	۶	→	*	•	•	*	4	†	-	/	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)	11	29			76	147	5	88		24	35	
Queue Length 95th (ft)	26	50			121	196	19	152		54	84	
Internal Link Dist (ft)		306			1133			1208			985	
Turn Bay Length (ft)							100			100		
Base Capacity (vph)	240	228			325	492	634	1460		563	1902	
Starvation Cap Reductn	0	0			0	0	0	0		0	0	
Spillback Cap Reductn	0	0			0	0	0	0		0	0	
Storage Cap Reductn	0	0			0	0	0	0		0	0	
Reduced v/c Ratio	0.09	0.24			0.44	0.62	0.04	0.31		0.18	0.15	

Intersection Summary

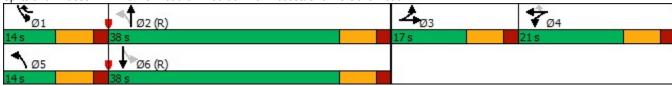
Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 88 (98%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 120


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.62 Intersection Signal Delay: 23.5 Intersection Capacity Utilization 46.6%

Intersection LOS: C
ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 1: Tunnel Road & Innsbruck Mall Access/Chunns Cove Road

Build (2023) Timing Plan: PM Peak

1: Tunnel Road & Innsbruck Mall Access/Chunns Cove Road

	•	→	•	1	•	•	1	†	-	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ĵ.			र्स	7	۲	†		۲	†	
Traffic Volume (vph)	53	46	58	156	31	243	48	554	120	240	666	43
Future Volume (vph)	53	46	58	156	31	243	48	554	120	240	666	43
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		-4%			2%			6%			-4%	
Storage Length (ft)	0		0	450		0	100		0	100		0
Storage Lanes	1		0	1		1	1		0	1		0
Taper Length (ft)	25			250			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.916				0.850		0.973			0.991	
Flt Protected	0.950				0.960		0.950			0.950		
Satd. Flow (prot)	1805	1740	0	0	1770	1567	1717	3262	0	1805	3481	0
Flt Permitted	0.950				0.960		0.304			0.207		
Satd. Flow (perm)	1805	1740	0	0	1770	1567	549	3262	0	393	3481	0
Right Turn on Red			No			No			No			No
Satd. Flow (RTOR)												
Link Speed (mph)		25			35			35			35	
Link Distance (ft)		386			1213			1288			1065	
Travel Time (s)		10.5			23.6			25.1			20.7	
Peak Hour Factor	0.94	0.94	0.94	0.89	0.89	0.89	0.83	0.83	0.83	0.90	0.90	0.90
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	5%	2%	2%	5%	2%
Adj. Flow (vph)	56	49	62	175	35	273	58	667	145	267	740	48
Shared Lane Traffic (%)												
Lane Group Flow (vph)	56	111	0	0	210	273	58	812	0	267	788	0
Turn Type	Split	NA		Split	NA	pm+ov	pm+pt	NA		pm+pt	NA	
Protected Phases	3	3		4	4	1	5	2		1	6	
Permitted Phases	_					4	2			6		
Detector Phase	3	3		4	4	1	5	2		1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	7.0	10.0		7.0	10.0	
Minimum Split (s)	30.0	30.0		35.0	35.0	14.0	14.0	38.0		14.0	35.0	
Total Split (s)	19.0	19.0		26.0	26.0	18.0	15.0	47.0		18.0	50.0	
Total Split (%)	17.3%	17.3%		23.6%	23.6%	16.4%	13.6%	42.7%		16.4%	45.5%	
Yellow Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0		5.0	5.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-2.0	-2.0			-2.0	-2.0	-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	5.0	5.0		1	5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lead		Lag	Lag	Lead	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None		None	None	None	None	C-Min		None	C-Min	
Act Effet Green (s)	12.3	12.3			18.4	37.3	54.6	45.4		63.7	52.9	
Actuated g/C Ratio	0.11 0.28	0.11 0.57			0.17 0.71	0.34 0.52	0.50	0.41 0.60		0.58 0.66	0.48 0.47	
v/c Ratio							0.16					
Control Delay	47.4 0.0	57.6 0.0			56.5 0.0	32.3 0.0	13.1 0.0	29.0 0.0		21.3 0.0	22.4	
Queue Delay	47.4				56.5	32.3	13.1			21.3	0.0 22.4	
Total Delay LOS	47.4 D	57.6 E			50.5 E	32.3 C	13.1 B	29.0 C		21.3 C	22.4 C	
	ט	54.2			42.8	C	D	28.0		C	22.1	
Approach Delay Approach LOS		54.2 D			42.8 D			26.0 C			22.1 C	
Apploacii LOS		U			ט			U			U	

1: Tunnel Road & Innsbruck Mall Access/Chunns Cove Road

	۶	→	*	•	•	*	4	†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)	37	75			140	146	17	245		89	204	
Queue Length 95th (ft)	74	131			215	227	36	285		#166	286	
Internal Link Dist (ft)		306			1133			1208			985	
Turn Bay Length (ft)							100			100		
Base Capacity (vph)	234	226			340	538	382	1384		412	1683	
Starvation Cap Reductn	0	0			0	0	0	0		0	0	
Spillback Cap Reductn	0	0			0	0	0	0		0	0	
Storage Cap Reductn	0	0			0	0	0	0		0	0	
Reduced v/c Ratio	0.24	0.49			0.62	0.51	0.15	0.59		0.65	0.47	

Intersection Summary

Area Type: Other

Cycle Length: 110

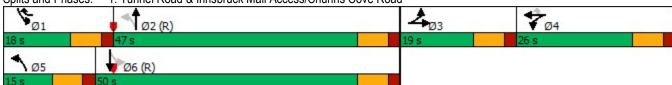
Actuated Cycle Length: 110

Offset: 4 (4%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 120

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.71 Intersection Signal Delay: 30.1 Intersection Capacity Utilization 61.9%


Intersection LOS: C
ICU Level of Service B

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Tunnel Road & Innsbruck Mall Access/Chunns Cove Road

CHUNNS COVE ROAD (SR 2244) & INTERSTATE 240 RAMPS

Int Delay, s/veh	Intersection								
Movement WBL WBR NBT NBR SBL SBT NWL NWR									
Lane Configurations	•	WBR	NBT	NBR	SBL	SBT	NWL	NWR	
Traffic Vol, veh/h 214 70 117 74 66 112 0 0 0 Future Vol, veh/h 214 70 117 74 66 112 0 0 0 Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 Sign Control Stop Stop Free Free Free Free Free Free Free Fre									
Future Vol, veh/h	Ü		117	74			0	0	
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0 Sign Control Stop Stop Free Free Free Free Free Free Free Fre	Future Vol, veh/h 214	70		74	66	112	0	0	
Sign Control Stop RT Channelized Stop None Free Po Description		0	0	0	0	0	0	0	
Storage Length		Stop	Free	Free	Free	Free	Free	Free	
Veh in Median Storage, #0 Grade, %	RT Channelized -	None	-	-	-	None	-	-	
Grade, % 0 0 - 0 - 0 0 0 - Peak Hour Factor 84 84 94 94 72 72 72 90 90 Heavy Vehicles, % 2 2 5 5 2 2 5 5 2 2 2 Mvmt Flow 255 83 124 79 92 156 0 0 0 Major/Minor Minor1 Major1 Major2	Storage Length 0	0	-	-	250	-	-	-	
Peak Hour Factor	Veh in Median Storage, #0	-	0	-	-	0	-	-	
Heavy Vehicles, % 2 2 5 2 2 5 2 2 2 5 0 0	Grade, % 0	-	0	-	-	0	0	-	
Mymit Flow 255 83 124 79 92 156 0 0 Major/Minor Minor1 Major1 Major2 Section 1 Major3 Major2 Conflicting Flow All Stage 1 164 0 0 203 0 0 Stage 1 164 - - - - - - Critical Hdwy 6.42 6.22 - - 4.12 - - Critical Hdwy Stg 1 5.42 -		84			72		90	90	
Major/Minor Minor1 Major1 Major2 Major2				2			2	2	
Conflicting Flow All 504 164 0 0 203 0 Stage 1	Mvmt Flow 255	83	124	79	92	156	0	0	
Conflicting Flow All 504 164 0 0 203 0									
Conflicting Flow All 504 164 0 0 203 0	Major/Minor Minor1	Ν	/lajor1	Ν	/lajor2				
Stage 1 164 -						0			
Stage 2 340 -			-	-	-				
Critical Hdwy 6.42 6.22 - 4.12 - Critical Hdwy Stg 1 5.42 Critical Hdwy Stg 2 5.42 Follow-up Hdwy 3.518 3.318 - 2.218 - Pot Cap-1 Maneuver 528 881 - 1369 - Stage 1 865 Platoon blocked, % Mov Cap-1 Maneuver 493 881 - 1369 - Stage 1 865 Stage 1 865 Mov Cap-2 Maneuver 493 881 - 1369 - Stage 2 673 Memor Lane/Major Mvmt NBT NBRWBLnWBLn2 SBL SBT Capacity (veh/h) - 493 881 1369 - HCM Los 0.517 0.095 0.067 - HCM Control Delay (s) - 19.8 9.5 7.8 - HCM Control Delay (s) - 19.8 9.5 7.8 - HCM Lane LOS			_	-	-	_			
Critical Hdwy Stg 1			_	_	4.12	-			
Critical Hdwy Stg 2 5.42			_	_	-	-			
Follow-up Hdwy 3.518 3.318 - 2.218 - Pot Cap-1 Maneuver 528 881 - 1369 - Stage 1 865 Stage 2 721 Platoon blocked, % 1369 - Mov Cap-1 Maneuver 493 881 - 1369 - Mov Cap-2 Maneuver 493 Stage 1 865 Stage 2 673 Stage 2 673 Minor Lane/Major Mvmt NBT NBRVBLntWBLn2 SBL SBT Capacity (veh/h) - 493 881 1369 - HCM Lane V/C Ratio - 0.517 0.095 0.067 - HCM Control Delay (s) - 19.8 9.5 7.8 - HCM Lane LOS - C A A -			-	-	-	-			
Pot Cap-1 Maneuver 528 881 - - 1369 - Stage 1 865 - - - - - Stage 2 721 - - - - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 493 - - - - - Mov Cap-2 Maneuver 493 - - - - - Stage 1 865 - - - - - Stage 2 673 - - - - - Stage 2 673 - - - - - HCM Control Delay, s17.3 0 2.9 HCM LoS C C SBL SBT Capacity (veh/h) - - 493 881 1369 - HCM Lane V/C Ratio - - 0.517 0.095 0.067 - HCM Lane LOS - - 19.8 9.5 7.8 -			-	-	2.218	-			
Stage 1 865 -			-	-	1369	-			
Stage 2 721 - - - - Platoon blocked, % - - - - Mov Cap-1 Maneuver 493 881 - - 1369 - Mov Cap-2 Maneuver 493 - - - - - Stage 1 865 - - - - - Stage 2 673 - - - - - Approach WB NB SB HCM Control Delay, s17.3 0 2.9 HCM LOS C C Minor Lane/Major Mvmt NBT NBRWBLnWBLn2 SBL SBT Capacity (veh/h) - - 493 881 1369 - HCM Lane V/C Ratio - - 0.517 0.095 0.067 - HCM Control Delay (s) - - 19.8 9.5 7.8 - HCM Lane LOS - - C A A -			-	-	-	-			
Platoon blocked, % - - - Mov Cap-1 Maneuver 493 881 - - 1369 - Mov Cap-2 Maneuver 493 - - - - - - Stage 1 865 - - - - - - - Stage 2 673 -		-	-	-	-	-			
Mov Cap-2 Maneuver 493 - <td>Platoon blocked, %</td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td>	Platoon blocked, %		-	-		-			
Stage 1 865 -	Mov Cap-1 Maneuver 493	881	-	-	1369	-			
Stage 2 673 -		-	-	-	-	-			
Approach WB NB SB HCM Control Delay, s17.3 HCM LOS 0 2.9 Minor Lane/Major Mvmt NBT NBRWBLn1WBLn2 SBL SBT Capacity (veh/h) - - 493 881 1369 - HCM Lane V/C Ratio - - 0.517 0.095 0.067 - HCM Control Delay (s) - 19.8 9.5 7.8 - HCM Lane LOS - C A A -	Stage 1 865	-	-	-	-	-			
HCM Control Delay, s17.3	Stage 2 673	-	-	-	-	-			
HCM Control Delay, s17.3									
HCM Control Delay, s17.3 0 2.9 Minor Lane/Major Mvmt NBT NBRWBLn1WBLn2 SBL SBT Capacity (veh/h) - - 493 881 1369 - HCM Lane V/C Ratio - - 0.517 0.095 0.067 - HCM Control Delay (s) - 19.8 9.5 7.8 - HCM Lane LOS - C A A -	Approach WB		NB		SB				
Minor Lane/Major Mvmt NBT NBRWBLntWBLn2 SBL SBT Capacity (veh/h) - - 493 881 1369 - HCM Lane V/C Ratio - - 0.517 0.095 0.067 - HCM Control Delay (s) - - 19.8 9.5 7.8 - HCM Lane LOS - - C A A -			0						
Minor Lane/Major Mvmt NBT NBRWBLnWBLn2 SBL SBT Capacity (veh/h) - - 493 881 1369 - HCM Lane V/C Ratio - - 0.517 0.095 0.067 - HCM Control Delay (s) - - 19.8 9.5 7.8 - HCM Lane LOS - - C A A -									
Capacity (veh/h) 493 881 1369 - HCM Lane V/C Ratio - 0.517 0.095 0.067 - HCM Control Delay (s) - 19.8 9.5 7.8 - HCM Lane LOS - C A A -									
Capacity (veh/h) 493 881 1369 - HCM Lane V/C Ratio - 0.517 0.095 0.067 - HCM Control Delay (s) - 19.8 9.5 7.8 - HCM Lane LOS - C A A -	Minor Lane/Maior Mymt	NBT	NBRM	/BLn 1 /\	/BLn2	SBI	SBT		
HCM Lane V/C Ratio - - 0.517 0.095 0.067 - HCM Control Delay (s) - - 19.8 9.5 7.8 - HCM Lane LOS - C A A									
HCM Control Delay (s) 19.8 9.5 7.8 - HCM Lane LOS C A A -		_	_				_		
HCM Lane LOS C A A -		_	_				_		
		_	_				_		
	HCM 95th %tile Q(veh)	_	_	2.9	0.3	0.2	_		

Intersection							
Int Delay, s/veh 9							
Movement WBL	WBR	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations 3	7	f			†		
Traffic Vol, veh/h 217	62	145	195	98	170	0	0
Future Vol, veh/h 217	62	145	195	98	170	0	0
Conflicting Peds, #/hr 0	0	0	0	0	0	0	0
Sign Control Stop		Free	Free	Free	Free	Free	Free
	None	-	-		None	-	-
Storage Length 0	0	-	-	250	-	-	-
Veh in Median Storage, #0	-	0	-	-	0	-	-
Grade, % 0	- 01	0	-	-	0	0	-
Peak Hour Factor 91	91	93	93	86	86	90	90
Heavy Vehicles, % 2	2	5 154	210	114	5 100	2	2
Mvmt Flow 238	68	156	210	114	198	U	0
NA 1 (NA)	_		_				
Major/Minor Minor1		1ajor1		1ajor2			
Conflicting Flow All 687	261	0	0	366	0		
Stage 1 261	-	-	-	-	-		
Stage 2 426 Critical Hdwy 6.42	6.22	-	-	4.12	-		
	0.22	-	-	4.12	-		
Critical Hdwy Stg 1 5.42 Critical Hdwy Stg 2 5.42	-	-	-	-	-		
	3.318	_	_	2.218	_		
Pot Cap-1 Maneuver 413	778	_	_	1193	_		
Stage 1 783	770	_	_	1175	_		
Stage 2 659	_	_	_	_	_		
Platoon blocked, %	-	_	_	_	_		
Mov Cap-1 Maneuver 373	778	_	_	1193	_		
Mov Cap-2 Maneuver 373	-	-	-	-	_		
Stage 1 783	-	-	-	-	_		
Stage 2 596	-	-	-	-	_		
J							
Approach WB		NB		SB			
HCM Control Delay, s25.8		0		3			
HCM LOS D		J		3			
= = = =							
Minor Lane/Major Mvmt	NBT	NBRA	/BLn 1 /\	/BLn2	SBL	SBT	
Capacity (veh/h)	-	-	373	778	1193	-	
HCM Lane V/C Ratio	_	-	0.639		0.096	-	
HCM Control Delay (s)	-	-	30.3	10.1	8.3	-	
HCM Lane LOS	-	-	D	В	Α	-	
HCM 95th %tile Q(veh)	-	-	4.2	0.3	0.3	-	

Movement WBL WBR NBT NBR SBL SBT NWL NWL	Intersection								
Lane Configurations		8.5							
Lane Configurations	Movement	WBI	WBR	NBT	NBR	SBI	SBT	NWI	NWR
Traffic Vol, veh/h Future Free Free Free Free Free Free Free F					11011				
Future Vol, veh/h Conflicting Peds, #/hr O O O O O O O O O O O O O O O O O O O					75			0	0
Conflicting Peds, #/hr 0									0
Sign Control Stop Stop Free Ro A B B B B B B B B B B A A A A A A A A A A A A A A A									0
RT Channelized - None - 250 - 3250								Free	Free
Storage Length				-				-	_
Weh in Median Storage, # 0 - 0 - 0 - 0 - 0 - 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 0 - 0 0 - 0 0 2 7 90 9 0 0 0 <td></td> <td>0</td> <td></td> <td>-</td> <td>-</td> <td>250</td> <td></td> <td>-</td> <td>_</td>		0		-	-	250		-	_
Grade, % 0 - 0 - 0 - 0 0 0 Peak Hour Factor 84 84 84 94 94 72 72 90 9 Heavy Vehicles, % 2 2 5 2 2 5 2 Mvmt Flow 258 85 127 80 93 158 0 Major/Minor Minorl Major1 Major2 Conflicting Flow All 511 167 0 0 207 0 Stage 1 167 Stage 2 344 Critical Hdwy 6.42 6.22 - 4.12 - Critical Hdwy Stg 1 5.42 Critical Hdwy Stg 2 5.42 1364 - Follow-up Hdwy 3.518 3.318 - 2.218 - Pot Cap-1 Maneuver 523 877 - 1364 - Stage 2 718 Stage 1 863 Mov Cap-1 Maneuver 487 877 - 1364 Platoon blocked, % Mov Cap-2 Maneuver 487 877 - 1364 Stage 1 863				0	_		0	_	_
Peak Hour Factor 84 84 94 94 72 72 90 90 Heavy Vehicles, % 2 2 5 2 2 5 2 Mvmt Flow 258 85 127 80 93 158 0 Major/Minor Minor Major1 Major2 Conflicting Flow All 511 167 0 0 207 0 Stage 1 167 - - - - - - Stage 2 344 - - - - - - Critical Hdwy 6.42 6.22 - 4.12 -	· ·		_		_	-		0	_
Heavy Vehicles, % 2 2 5 2 2 5 2 Mvmt Flow 258 85 127 80 93 158 0 Major/Minor Minor1 Major1 Major2 Stage 1 167 0 0 207 0 Stage 1 167 -			84		94	72			90
Mvmt Flow 258 85 127 80 93 158 0 Major/Minor Minor1 Major1 Major2 Conflicting Flow All 511 167 0 0 207 0 Stage 1 167 - - - - - Stage 2 344 - - - - - Critical Hdwy 6.42 6.22 - 4.12 -									2
Major/Minor Minor1 Major1 Major2 Conflicting Flow All 511 167 0 0 207 0 Stage 1 167 - - - - - Stage 2 344 - - - - - Critical Hdwy 6.42 6.22 - 4.12 - - Critical Hdwy Stg 1 5.42 - - - - - - Critical Hdwy Stg 2 5.42 -									0
Conflicting Flow All 511 167 0 0 207 0 Stage 1 167 - - - - - Stage 2 344 - - - - - Critical Hdwy 6.42 6.22 - 4.12 - Critical Hdwy Stg 1 5.42 - - - - Critical Hdwy Stg 2 5.42 - - - - Follow-up Hdwy 3.518 3.318 - 2.218 - Pot Cap-1 Maneuver 523 877 - 1364 - Stage 1 863 - - - - Stage 2 718 - - - - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 487 877 - 1364 - Stage 1 863 - - - - Stage 2 669 - - - - Approach WB NB		200	00		00	,5	.00	3	J
Conflicting Flow All 511 167 0 0 207 0 Stage 1 167 - - - - - Stage 2 344 - - - - - Critical Hdwy 6.42 6.22 - 4.12 - Critical Hdwy Stg 1 5.42 - - - - Critical Hdwy Stg 2 5.42 - - - - Follow-up Hdwy 3.518 3.318 - 2.218 - Pot Cap-1 Maneuver 523 877 - 1364 - Stage 1 863 - - - - Stage 2 718 - - - - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 487 877 - 1364 - Stage 1 863 - - - - Stage 2 669 - - - - Approach WB NB	Major/Minor	Minor1	n	Major1	,	Majora			
Stage 1 167 -							0		
Stage 2 344 - - - - - - - - - - - - - - - - - - - - - - - - - - - <th< td=""><td>· ·</td><td></td><td>10/</td><td></td><td>U</td><td>207</td><td>U</td><td></td><td></td></th<>	· ·		10/		U	207	U		
Critical Hdwy 6.42 6.22 - 4.12 - Critical Hdwy Stg 1 5.42 - - - - Critical Hdwy Stg 2 5.42 - - - - Follow-up Hdwy 3.518 3.318 - - 2.218 - Pot Cap-1 Maneuver 523 877 - 1364 - Stage 1 863 - - - - Stage 2 718 - - - - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 487 877 - 1364 - Stage 1 863 - - - - - Stage 2 669 - - - - - Approach WB NB SB HCM Control Delay, s 17.7 0 2.9 Minor Lane/Major Mvmt NBT NBRWBLn1WBLn2 SBL SBT Capacity (veh/h) - 487 877 1364	· ·		-	-	-	-	-		
Critical Hdwy Stg 1 5.42 - <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td>				-	-	-	-		
Critical Hdwy Stg 2 5.42 - <td></td> <td></td> <td>6.22</td> <td>-</td> <td>-</td> <td>4.12</td> <td>-</td> <td></td> <td></td>			6.22	-	-	4.12	-		
Follow-up Hdwy 3.518 3.318 - 2.218 - Pot Cap-1 Maneuver 523 877 - 1364 - Stage 1 863 Stage 2 718 Platoon blocked, % Mov Cap-1 Maneuver 487 877 - 1364 - Mov Cap-2 Maneuver 487 1364 - Stage 1 863 Stage 1 863 Stage 1 863 Stage 2 669 Approach WB NB SB HCM Control Delay, s 17.7 HCM LOS C Minor Lane/Major Mvmt NBT NBRWBLn1WBLn2 SBL SBT Capacity (veh/h) - 487 877 1364 -	3 0		-	-	-	-	-		
Pot Cap-1 Maneuver 523 877 - - 1364 - Stage 1 863 - - - - - Stage 2 718 - - - - - Platoon blocked, % - - - - - - Mov Cap-1 Maneuver 487 877 - 1364 - Mov Cap-2 Maneuver 487 - - - - - Stage 1 863 - - - - - - Stage 2 669 - - - - - - Approach WB NB SB - HCM Control Delay, s 17.7 0 2.9 HCM LOS C C Minor Lane/Major Mvmt NBT NBRWBLn1WBLn2 SBL SBT Capacity (veh/h) - 487 877 1364				-	-	-	-		
Stage 1 863 -				-	-		-		
Stage 2 718 - - - - - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 487 877 - - 1364 - Mov Cap-2 Maneuver 487 - - - - - - Stage 1 863 - - - - - - Stage 2 669 - - - - - - Approach WB NB SB - - - - - HCM Control Delay, s 17.7 0 2.9 -	•		877	-	-	1364	-		
Platoon blocked, % -			-	-	-	-	-		
Mov Cap-1 Maneuver 487 877 - - 1364 - Mov Cap-2 Maneuver 487 - - - - - Stage 1 863 - - - - - Stage 2 669 - - - - - HCM Control Delay, s 17.7 0 2.9 HCM LOS C C Minor Lane/Major Mvmt NBT NBRWBLn1WBLn2 SBL SBT Capacity (veh/h) - 487 877 1364 -		718	-	-	-	-	-		
Mov Cap-2 Maneuver 487 -	Platoon blocked, %			-	-		-		
Stage 1 863 -	Mov Cap-1 Maneuver	487	877	-	-	1364	-		
Stage 2 669 -	Mov Cap-2 Maneuver	487	-	-	-	-	-		
Stage 2 669 -	Stage 1	863	-	-	-	-	-		
Approach WB NB SB HCM Control Delay, s 17.7 0 2.9 HCM LOS C C Minor Lane/Major Mvmt NBT NBRWBLn1WBLn2 SBL SBT Capacity (veh/h) - 487 877 1364 -		669	-	-	-	-	-		
HCM Control Delay, s 17.7 0 2.9	J								
HCM Control Delay, s 17.7 0 2.9	Approach	WR		NB		SB			
Minor Lane/Major Mvmt NBT NBRWBLn1WBLn2 SBL SBT Capacity (veh/h) - 487 877 1364 -									
Minor Lane/Major Mvmt NBT NBRWBLn1WBLn2 SBL SBT Capacity (veh/h) - 487 877 1364 -				U		۷. ۱			
Capacity (veh/h) 487 877 1364 -	HOW LOS	C							
Capacity (veh/h) 487 877 1364 -									
		mt	NBT	NBRV				SBT	
			-	-				-	
	HCM Lane V/C Ratio		-	-	0.53	0.096	0.068	-	
HCM Control Delay (s) 20.4 9.5 7.8 -	HCM Control Delay (s	s)	-	-	20.4	9.5	7.8	-	
HCM Lane LOS C A A -	HCM Lane LOS		-	-	С		Α	-	
HCM 95th %tile Q(veh) 3.1 0.3 0.2 -	HCM 95th %tile Q(veh	h)	-	-	3.1	0.3	0.2	-	

Intersection								
Int Delay, s/veh	9.3							
Movement	WBL	WBR	NBT	NBR	SBL	SBT	<u>NWL</u>	NWR
Lane Configurations	ሻ	7	£		ሻ	†		
Traffic Vol, veh/h	220	63	147	198	99	173	0	0
Future Vol, veh/h	220	63	147	198	99	173	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	·-	None	-	-	-	None	-	-
Storage Length	0	0	-	-	250	-	-	-
Veh in Median Storage		-	0	-	-	0	-	-
Grade, %	0	-	0	-	-	0	0	_
Peak Hour Factor	91	91	93	93	86	86	90	90
Heavy Vehicles, %	2	2	5	2	2	5	2	2
Mvmt Flow	242	69	158	213	115	201	0	0
	- 12	07	.00	-10	. 10	_01	3	J
Major/Minor I	Minor1	N	Major1	,	Major2			
	696	265	<u>viajoi i</u> 0	0	371	0		
Conflicting Flow All			U	U	3/1	U		
Stage 1	265	-	-	-	-	-		
Stage 2	431	- 4 22	-	-	- / 10	-		
Critical Hdwy	6.42	6.22	-	-	4.12	-		
Critical Hdwy Stg 1	5.42	-	-	-	-	-		
Critical Hdwy Stg 2	5.42	-	-	-	-	-		
Follow-up Hdwy		3.318	-	-	2.218	-		
Pot Cap-1 Maneuver	408	774	-	-	1188	-		
Stage 1	779	-	-	-	-	-		
Stage 2	655	-	-	-	-	-		
Platoon blocked, %			-	-		-		
Mov Cap-1 Maneuver	368	774	-	-	1188	-		
Mov Cap-2 Maneuver	368	-	-	-	-	-		
Stage 1	779	-	-	-	-	-		
Stage 2	591	-	_	-	-	-		
<i>3</i> -								
Approach	WB		NB		SB			
HCM Control Delay, s			0		3			
HCM LOS	20.9 D		U		3			
HOW LOS	U							
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1V		SBL	SBT	
Capacity (veh/h)		-	-	368	774	1188	-	
HCM Lane V/C Ratio		-	-	0.657			-	
HCM Control Delay (s))	-	-	31.7	10.1	8.4	-	
HCM Lane LOS		-	-	D	В	Α	-	
HCM 95th %tile Q(veh)	-	-	4.5	0.3	0.3	-	
·								

Intersection Int Delay, s/veh 11.7
Movement WBL WBR NBT NBR SBL SBT NWL NWR
Lane Configurations 7 7 6
Traffic Vol, veh/h 217 82 139 75 98 172 0 0
Future Vol, veh/h 217 82 139 75 98 172 0 0
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0
Sign Control Stop Stop Free Free Free Free Free Free
RT Channelized - None None
Storage Length 0 0 250
Veh in Median Storage, # 0 - 0 - 0
Grade, % 0 - 0 0 0 -
Peak Hour Factor 84 84 94 94 72 72 90 90
Heavy Vehicles, % 2 2 5 2 2 5 2 2
Mymt Flow 258 98 148 80 136 239 0 0
Major/Minor Minor1 Major1 Major2
Major/Minor Minor1 Major1 Major2
Conflicting Flow All 699 188 0 0 228 0
Stage 1 188
Stage 2 511
Critical Hdwy 6.42 6.22 4.12 -
Critical Hdwy Stg 1 5.42
Critical Hdwy Stg 2 5.42
Follow-up Hdwy 3.518 3.318 2.218 -
Pot Cap-1 Maneuver 406 854 1340 -
Stage 1 844
Stage 2 602
Platoon blocked, %
Mov Cap-1 Maneuver 365 854 1340 -
Mov Cap-2 Maneuver 365
Stage 1 844
Stage 2 541
Approach WB NB SB
HCM Control Delay, s 28.5 0 2.9
HCM LOS D
Minor Lane/Major Mvmt NBT NBRWBLn1WBLn2 SBL SBT
,
Capacity (veh/h) 365 854 1340 -
HCM Lane V/C Ratio 0.708 0.114 0.102 -
HCM Control Delay (s) 35.5 9.8 8 -
LICATION TO A
HCM Lane LOS E A A -
HCM Lane LOS - - E A A - HCM 95th %tile Q(veh) - - 5.2 0.4 0.3 -

Intersection									
Int Delay, s/veh	14.3								
Movement	WBL	WBR	NBT	NBR	SBL	SBT	NWL	NWR	
Lane Configurations	ሻ	7	÷		ሻ	†			
Traffic Vol, veh/h	220	95	207	198	120	212	0	0	
Future Vol, veh/h	220	95	207	198	120	212	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	None	-	-	-	None	-	-	
Storage Length	0	0	-	-	250	-	-	-	
Veh in Median Storage		-	0	-	-	0	-	-	
Grade, %	0	-	0	-	-	0	0	-	
Peak Hour Factor	91	91	93	93	86	86	90	90	
Heavy Vehicles, %	2	2	5	2	2	5	2	2	
Mvmt Flow	242	104	223	213	140	247	0	0	
Major/Minor	Minor1	N	Najor1	N	Major2				
Conflicting Flow All	857	330	0	0	436	0			
Stage 1	330	-	-	-	-	-			
Stage 2	527	-	-	-	-	-			
Critical Hdwy	6.42	6.22	-	-	4.12	-			
Critical Hdwy Stg 1	5.42	-	-	-	-	-			
Critical Hdwy Stg 2	5.42	-	-	-	-	-			
Follow-up Hdwy	3.518	3.318	-	-	2.218	-			
Pot Cap-1 Maneuver	328	712	-	-	1124	-			
Stage 1	728	-	-	-	-	-			
Stage 2	592	-	-	-	-	-			
Platoon blocked, %			-	-		-			
Mov Cap-1 Maneuver	287	712	-	-	1124	-			
Mov Cap-2 Maneuver	287	-	-	-	-	-			
Stage 1	728	-	-	-	-	-			
Stage 2	518	-	-	-	-	-			
Approach	WB		NB		SB				
HCM Control Delay, s	44.9		0		3.1				
HCM LOS	Ε								
Minor Lane/Major Mvn	nt	NBT	NRRV	VBLn1V	VRI n2	SBL	SBT		
Capacity (veh/h)	IL.	INDI	אוטויו	287	712	1124	<u> </u>		
HCM Lane V/C Ratio		-	-	0.842			-		
HCM Control Delay (s)	١	-	-	59.6	10.9	8.7	-		
HCM Lane LOS)	-	-	59.0 F	10.9 B	6. <i>1</i>	-		
HCM 95th %tile Q(veh)	-	-	т 7.1	0.5	0.4	-		
110W 75W 76W Q(VCI)	'/	-	_	7.1	0.5	0.4	-		

CHUNNS COVE ROAD (SR 2244) & PINEY MOUNTAIN DRIVE

•					
Intersection					
Int Delay, s/veh 1.2					
3.	WBR	NIDT	NIDD	CDI	CDT
	WDK		NBR	SBL	SBT
Lane Configurations Y	А	þ	12/	4	4 140
Traffic Vol, veh/h 29	4	51	136	4	148
Future Vol, veh/h 29	4	51	136	4	148
Conflicting Peds, #/hr 0	0	_ 0	_ 0	0	0
Sign Control Stop		Free	Free	Free	Free
	None	-	None	-	None
Storage Length 0	-	-	-	-	-
Veh in Median Storage, #0	-	0	-	-	0
Grade, % 0	_	0	-	_	0
Peak Hour Factor 68	68	88	88	73	73
Heavy Vehicles, % 2	2	5	2	2	5
Mvmt Flow 43	6	58	155	5	203
IVIVIIILI IUVV 43	O	20	100	ິນ	203
Major/Minor Minor1	N	/lajor1	\	/lajor2	
Conflicting Flow All 349	136	0	0	213	0
Stage 1 136	-	-	-		-
Stage 2 213	_	_	_	_	_
Critical Hdwy 6.42	6.22			4.12	
	0.22	_	-	4.12	-
3 3		-	-	-	-
Critical Hdwy Stg 2 5.42	-	-	-	-	-
	3.318	-	-	2.218	-
Pot Cap-1 Maneuver 648	913	-	-	1357	-
Stage 1 890	-	-	-	-	-
Stage 2 823	-	-	-	-	-
Platoon blocked, %		-	-		_
Mov Cap-1 Maneuver 645	913	_	_	1357	_
Mov Cap-2 Maneuver 645	-	_	_	-	_
Stage 1 890	_	_	_	_	_
	-	-	-	-	-
Stage 2 820	-	-	-	-	-
Approach WB		NB		SB	
HCM Control Delay, s10.8		0		0.2	
HCM LOS B		3		٥.٢	
I IOW LOS					
Minor Lane/Major Mvmt	NBT	NBRM	/BLn1	SBL	SBT
Capacity (veh/h)	-	-	669	1357	-
HCM Lane V/C Ratio	_	_	0.073		_
HCM Control Delay (s)	_	_	10.8	7.7	0
HCM Lane LOS	_	_	В	Α	A
HCM 95th %tile Q(veh)	-	-	0.2	0	^
i ioivi 75tii 76tile Q(vell)	-	-	0.2	U	-

Intersection					
Int Delay, s/veh 4.8					
Movement WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations 🦞		f)			सी
Traffic Vol, veh/h 161		155	52	4	107
Future Vol, veh/h 161	4	155	52	4	107
Conflicting Peds, #/hr 0	0	0	0	0	0
Sign Control Stop	Stop	Free	Free	Free	Free
	None	-	None	-	None
Storage Length 0	-	-	-	-	-
Veh in Median Storage, #0	-	0	-	-	0
Grade, %	-	0	-	-	0
Peak Hour Factor 79	79	91	91	77	77
Heavy Vehicles, % 2		5	2	2	5
Mvmt Flow 204		170	57	5	139
20.	· ·			· ·	'
Major/Minor Minor1	N.	1ajor1	V	/lajor2	
Conflicting Flow All 348		0	0	227	0
Stage 1 199		U	U	221	-
Stage 2 149		-	-	-	-
		-	-	4.12	-
		-	-	4.12	-
Critical Hdwy Stg 1 5.42		-	-	-	-
Critical Hdwy Stg 2 5.42		-	-	- 2 210	-
	3.318	-	-	2.218	-
Pot Cap-1 Maneuver 649		-	-	1341	-
Stage 1 835		-	-	-	-
Stage 2 879	-	-	-	-	-
Platoon blocked, %		-	-		-
Mov Cap-1 Maneuver 646		-	-	1341	-
Mov Cap-2 Maneuver 646		-	-	-	-
Stage 1 835		-	-	-	-
Stage 2 875	-	-	-	-	-
Approach WB		NB		SB	
HCM Control Delay, s13.1		0		0.3	
HCM LOS B					
-					
Minor Lane/Major Mvmt	NRT	NIRDW	/RI n1	SBL	SBT
	INDI	NDN		1341	
Capacity (veh/h)	-	-	650		-
HCM Cantral Dalay (a)	-	-	0.321	0.004	-
HCM Control Delay (s)	-	-	13.1	7.7	0
HCM Lane LOS	-	-	В	Α	Α
HCM 95th %tile Q(veh)	-	-	1.4	0	-

Intersection						
Int Delay, s/veh	1.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WBL	WDR	Î	NDK	JDL	
		1		120	1	4 150
Traffic Vol., veh/h	29	4	52	138	4	150
Future Vol, veh/h	29	4	52	138	4	150
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	68	68	88	88	73	73
Heavy Vehicles, %	2	2	5	2	2	5
Mvmt Flow	43	6	59	157	5	205
		Ū	0,		· ·	
		_				
	Minor1		Major1		Major2	
Conflicting Flow All	353	138	0	0	216	0
Stage 1	138	-	-	-	-	-
Stage 2	215	-	-	-	-	-
Critical Hdwy	6.42	6.22	_	_	4.12	_
Critical Hdwy Stg 1	5.42	_	_	_	_	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy		3.318	_	_	2.218	_
Pot Cap-1 Maneuver	645	910			1354	
•	889	710	_	_	1334	_
Stage 1		-	-	-	-	-
Stage 2	821	-	-	-	-	-
Platoon blocked, %			-	-	4.0	-
Mov Cap-1 Maneuver	642	910	-	-	1354	-
Mov Cap-2 Maneuver	642	-	-	-	-	-
Stage 1	889	-	-	-	-	-
Stage 2	818	-	-	-	-	-
J						
Approach	WB		NB		SB	
HCM Control Delay, s	10.8		0		0.2	
HCM LOS	В		J		0.2	
HOW LOJ	D					
Minor Lane/Major Mvm	nt	NBT	NBRV	WBLn1	SBL	SBT
Capacity (veh/h)		-	-	666	1354	-
HCM Lane V/C Ratio		-	-	0.073		_
HCM Control Delay (s)	١	-	_	10.8	7.7	0
HCM Lane LOS	,	_	_	В	Α	A
HCM 95th %tile Q(veh)	_	_	0.2	0	-
110W 70W 70W Q(VCI)	,		_	0.2	U	

Intersection						
Int Delay, s/veh	4.8					
Movement	WBL	WBR	NIDT	NBR	CDI	CDT
		WDK	NBT 1	NDK	SBL	SBT
Lane Configurations Traffic Vol, veh/h	₩ 163	1	}	E2	1	र्ब 100
·		4	157	53 52	4	109
Future Vol, veh/h	163	4	157	53	4	109
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	79	79	91	91	77	77
Heavy Vehicles, %	2	2	5	2	2	5
Mvmt Flow	206	5	173	58	5	142
Major/Minor	Minor1	N	Major1	ı	Major2	
Conflicting Flow All	354	202	0	0	231	0
Stage 1	202	202	-	-		-
Stage 1	152	-	_	-	-	_
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	0.22	-	-	7.12	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
	3.518		-	-	2.218	-
Follow-up Hdwy	3.518	839	-	-	1337	-
Pot Cap-1 Maneuver		039	-	-	133/	-
Stage 1	832	-	-	-	-	-
Stage 2	876	-	-	-	-	-
Platoon blocked, %	/ 44	000	-	-	1007	-
Mov Cap-1 Maneuver	641	839	-	-	1337	-
Mov Cap-2 Maneuver	641	-	-	-	-	-
Stage 1	832	-	-	-	-	-
Stage 2	872	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s			0		0.3	
HCM LOS	В		J		5.5	
	J					
Minor Lane/Major Mvr	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	645	1337	-
HCM Lane V/C Ratio		-	-	0.328		-
HCM Control Delay (s)	-	-	13.3	7.7	0
HCM Lane LOS		-	-	В	Α	Α
HCM 95th %tile Q(veh	1)	-	-	1.4	0	-

Intersection						
Int Delay, s/veh	3.7					
•		WIDD	NDT	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		}	4.0		4
Traffic Vol, veh/h	118	4	52	169	4	150
Future Vol, veh/h	118	4	52	169	4	150
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	68	68	88	88	73	73
Heavy Vehicles, %	2	2	5	2	2	5
Mvmt Flow	174	6	59	192	5	205
WWW. Tiow	.,,	Ü	07	172	Ü	200
	Minor1		/lajor1		Major2	
Conflicting Flow All	370	155	0	0	251	0
Stage 1	155	-	-	-	-	-
Stage 2	215	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	_	-	2.218	_
Pot Cap-1 Maneuver	630	891	_	_	1314	_
Stage 1	873	_	_	_	_	_
Stage 2	821	_	_	_	_	_
Platoon blocked, %	021		_	_		_
Mov Cap-1 Maneuver	627	891			1314	
Mov Cap-1 Maneuver	627	071	-	-	1314	-
		-	-	-	-	-
Stage 1	873	-	-	-	-	-
Stage 2	818	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	12.9		0		0.2	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBT	NIRDV	VBLn1	SBL	SBT
	IL	INDI	INDKV			JDI
Capacity (veh/h)		-	-	633	1314	-
HCM Lane V/C Ratio		-	-	0.283		-
HCM Control Delay (s))	-	-	12.9	7.8	0
HCM Lane LOS	,	-	-	В	A	Α
HCM 95th %tile Q(veh	1)	-	-	1.2	0	-

Intersection						
Int Delay, s/veh	6.2					
-		WDD	NDT	NIDD	CDI	CDT
Movement Lang Configurations	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	222	1	} ₃	115	Λ	₫
Traffic Vol, veh/h	223	4	157	145	4	109
Future Vol, veh/h	223	4	157	145	4	109
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	79	79	91	91	77	77
Heavy Vehicles, %	2	2	5	2	2	5
Mvmt Flow	282	5	173	159	5	142
Major/Miner	Mine-1		Aole-1		Malara	
	Minor1		Major1		Major2	
Conflicting Flow All	405	253	0	0	332	0
Stage 1	253	-	-	-	-	-
Stage 2	152	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	_	_	2.218	_
Pot Cap-1 Maneuver	602	786	_	_	1227	_
Stage 1	789	_	_	_	_	_
Stage 2	876	_	_	_	_	_
Platoon blocked, %	070		_	_		_
Mov Cap-1 Maneuver	600	786			1227	
		700	-	-	1227	-
Mov Cap-2 Maneuver	600	-	-	-	-	-
Stage 1	789	-	-	-	-	-
Stage 2	872	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	16.3		0		0.3	
HCM LOS	С					
	_					
6 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A		NET	NID D.	MDI -	051	007
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	603	1227	-
HCM Lane V/C Ratio		-	-	0.477	0.004	-
HCM Control Delay (s))	-	-	16.3	7.9	0
HCM Lane LOS		-	-	С	Α	Α
HCM 95th %tile Q(veh)	-	-	2.6	0	-
•	-					

PINEY MOUNTAIN DRIVE & PROPOSED DEVELOPMENT ACCESS

Intersection						
Int Delay, s/veh	1.9					
j		WDD	NDT	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W	4-	î,			4
Traffic Vol, veh/h	4	45	74	4	16	153
Future Vol, veh/h	4	45	74	4	16	153
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	4	50	82	4	18	170
					.5	
		_		_		
	Minor1		/lajor1		Major2	
Conflicting Flow All	290	84	0	0	86	0
Stage 1	84	-	-	-	-	-
Stage 2	206	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	_	_	_	-	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518	3.318	_	_	2.218	_
Pot Cap-1 Maneuver	701	975	_	_	1510	_
Stage 1	939	713			1310	
Stage 2	829	-	-	-	-	-
	029	-	-	-	-	-
Platoon blocked, %	(00	075	-	-	1510	-
Mov Cap-1 Maneuver	692	975	-	-	1510	-
Mov Cap-2 Maneuver	692	-	-	-	-	-
Stage 1	939	-	-	-	-	-
Stage 2	818	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9		0		0.7	
HCM LOS	Á		J		5.7	
HOW LOS	٨					
Minor Lane/Major Mvr	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	944	1510	-
HCM Lane V/C Ratio		-	-	0.058		-
HCM Control Delay (s)	_	-	9	7.4	0
HCM Lane LOS	,	_	_	Á	Α	Ä
HCM 95th %tile Q(veh	1)	_	_	0.2	0	-
	',			٥	3	

Intersection						
Int Delay, s/veh	2.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	₩	*****	<u>₩</u>	11011	JDL	<u> </u>
Traffic Vol, veh/h	4	44	30	4	15	138
Future Vol, veh/h	4	44	30	4	15	138
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Jiop -	None	-	None	-	None
Storage Length	0	-	_	-	_	-
Veh in Median Storage		-	0	_		0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	4	49	33	4	17	153
Major/Minor	Minor1	N	Najor1	1	Major2	
Conflicting Flow All	222	35	0	0	37	0
Stage 1	35	_	_	_	-	-
Stage 2	187	_	_	_	_	_
Critical Hdwy	6.42	6.22	_	_	4.12	_
Critical Hdwy Stg 1	5.42	-	_	_	-	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518	3.318	_	_	2.218	_
Pot Cap-1 Maneuver	766	1038	_	_	1574	_
Stage 1	987	-	_	_	-	_
Stage 2	845	_	_	_	_	_
Platoon blocked, %	043					_
Mov Cap-1 Maneuver	757	1038	-	-	1574	-
	757 757	1030	-	-	13/4	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	987	-	-	-	-	-
Stage 2	835	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.8		0		0.7	
HCM LOS	Α					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)	-			1007	1574	
HCM Lane V/C Ratio		-	-	0.053		-
HCM Control Delay (s)	١	-	-	8.8	7.3	0
HCM Lane LOS)	-	-	0.0 A	7.3 A	A
HCM 95th %tile Q(veh	n)	-	-	0.2	A 0	А
HOW FOUT MILE Q(VEI	IJ	-	-	U.Z	U	-

Intersection						
Int Delay, s/veh	1.8					
-		MDD	NET	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		₽			र्स
Traffic Vol, veh/h	4	30	195	4	46	99
Future Vol, veh/h	4	30	195	4	46	99
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	4	33	217	4	51	110
WWW. LOW	7	33	217	7	51	110
Major/Minor I	Vinor1	N	Najor1	ľ	Major2	
Conflicting Flow All	431	219	0	0	221	0
Stage 1	219	-	-	-	-	-
Stage 2	212	_	_	_	_	-
Critical Hdwy	6.42	6.22	_	_	4.12	_
Critical Hdwy Stg 1	5.42	_	_	_	_	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518		_	_	2.218	_
Pot Cap-1 Maneuver	581	821			1348	
•	817	021	-	-	1340	-
Stage 1		-	-	-	-	-
Stage 2	823	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	558	821	-	-	1348	-
Mov Cap-2 Maneuver	558	-	-	-	-	-
Stage 1	817	-	-	-	-	-
Stage 2	790	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.9		0		2.5	
HCM LOS	Α.		U		2.5	
HOW LOS	А					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	_	778	1348	-
HCM Lane V/C Ratio		_	-	0.049		-
HCM Control Delay (s)		_	_	9.9	7.8	0
HCM Lane LOS		_	_	A	A	Ã
HCM 95th %tile Q(veh)	_	_	0.2	0.1	-
	,			٥.ـ	J. 1	

2.3					
	\M/DD	NDT	NIDD	ÇDI	SBT
	WDK		NDK	SDL	
· .	20		1	14	€
					53
			-		53
					0
Stop					Free
-	None	-	None	-	None
0	-	-	-	-	-
e, # 0	-	0	-	-	0
0	-	0	-	-	0
90	90	90	90	90	90
2	2	2	2	2	2
4			4		59
·				٠.	0,
		_			
	185	0	0	187	0
185	-	-	-	-	-
161	-	-	-	-	-
6.42	6.22	-	-	4.12	-
	_	_	_	_	_
	_	_	_	_	_
	3 318	_	_	2 218	_
		_	_		_
	557	_		1001	_
	-	-	-	-	-
909	-	-	-	-	-
/0/	057	-	-	1007	-
	85/	-	-	138/	-
	-	-	-	-	-
	-	-	-	-	-
835	-	-	-	-	-
WB		NB		SB	
		J		5.0	
٨					
nt	NBT	NBRV			SBT
	-	-	821	1387	-
	-	-	0.046	0.037	-
)	-	-	9.6	7.7	0
	_	-			Α
1)	_	_	0.1	0.1	_
	WBL 4 4 0 Stop 0 90 2 4 Minor1 346 185 161 6.42 5.42 5.42 3.518 651 847 868 626 626 847 835 WB 9.6 A	WBL WBR 4 30 4 30 0 0 Stop Stop - None 0 90 90 2 2 4 33 Minor1	WBL WBR NBT 4 30 165 4 30 165 0 0 0 Stop Stop Free None - 0 0 - 0 90 90 90 2 2 2 4 33 183 Minor1 Major1 Major1 Major1 346 185 0 185 6.42 6.22 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 3.518 3.318 - 651 857 - 847 - 868 626 847 - 868 626 847 - 835 WB NB NB NB NB NB NB NB NB NB	WBL WBR NBT NBR 4 30 165 4 4 30 165 4 0 0 0 0 Stop Stop Free Free None - None 0 - 0 - 90 90 90 90 2 2 2 2 4 33 183 4 Minor1 Major1 □ 346 185 0 0 185 - - - 6.42 6.22 - - 5.42 - - - 5.42 - - - 847 - - - 847 - - - 847 - - - 626 857 - - 847 - - - <tr< td=""><td>WBL WBR NBT NBR SBL Y Image: SBL Ima</td></tr<>	WBL WBR NBT NBR SBL Y Image: SBL Ima